还剩9页未读,
继续阅读
高中数学必修第一册第2章 2.3 第1课时《一元二次不等式及其解法》教案-2019人教A版
展开
这是一份高中数学必修第一册第2章 2.3 第1课时《一元二次不等式及其解法》教案-2019人教A版,共12页。
2.3 二次函数与一元二次方程、不等式
第1课时 一元二次不等式及其解法
学 习 目 标
核 心 素 养
1.掌握一元二次不等式的解法(重点).
2.能根据“三个二次”之间的关系解决简单问题(难点).
通过一元二次不等式的学习,培养数学运算素养.
1.一元二次不等式的概念
只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.
2.一元二次不等式的一般形式
(1)ax2+bx+c>0(a≠0).
(2)ax2+bx+c≥0(a≠0).
(3)ax2+bx+c<0(a≠0).
(4)ax2+bx+c≤0(a≠0).
思考1:不等式x2-y2>0是一元二次不等式吗?
提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.
3.一元二次不等式的解与解集
使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.
思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?
提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.
4.三个“二次”的关系
设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
解不等式y>0或y<0的步骤
求方程y=0的解
有两个不相等的实数根x1,x2(x1<x2)
有两个相等的实数根x1=x2=-
没有
实数根
画函数y=ax2+bx+c(a>0)的图象
得等的集不式解
y>0
{x|x<x1_或x>x2}
R
y<0
{x|x1<x<x2}
∅
∅
思考3:若一元二次不等式ax2+x-1>0的解集为R,则实数a应满足什么条件?
提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R.
1.不等式3+5x-2x2≤0的解集为( )
A.
B.
C.
D.R
C [3+5x-2x2≤0⇒2x2-5x-3≥0⇒(x-3)(2x+1)≥0⇒x≥3或x≤-.]
2.不等式3x2-2x+1>0的解集为( )
A. B.
C.∅ D.R
D [因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x2-2x+1>0的解集为R.]
3.不等式x2-2x-5>2x的解集是________.
{x|x>5或x<-1} [由x2-2x-5>2x,得x2-4x-5>0,因为x2-4x-5=0的两根为-1,5,
故x2-4x-5>0的解集为{x|x<-1或x>5}.]
4.不等式-3x2+5x-4>0的解集为________.
∅ [原不等式变形为3x2-5x+4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x2-5x+4=0无解.
由函数y=3x2-5x+4的图象可知,3x2-5x+4<0的解集为∅.]
一元二次不等式的解法
【例1】 解下列不等式:
(1)2x2+7x+3>0;
(2)-4x2+18x-≥0;
(3)-2x2+3x-2<0.
[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x+3=0有两个不等实根x1=-3,x2=-.又二次函数y=2x2+7x+3的图象开口向上,所以原不等式的解集为.
(2)原不等式可化为2≤0,所以原不等式的解集为.
(3)原不等式可化为2x2-3x+2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x+2=0无实根,又二次函数y=2x2-3x+2的图象开口向上,所以原不等式的解集为R.
解不含参数的一元二次不等式的一般步骤
(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.
(2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.
(3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根.
(4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图.
(5)写解集.根据图象写出不等式的解集.
1.解下列不等式
(1)2x2-3x-2>0;
(2)x2-4x+4>0;
(3)-x2+2x-3<0;
(4)-3x2+5x-2>0.
[解] (1)∵Δ>0,方程2x2-3x-2=0的根是x1=-,x2=2,
∴不等式2x2-3x-2>0的解集为
.
(2)∵Δ=0,方程x2-4x+4=0的根是x1=x2=2,
∴不等式x2-4x+4>0的解集为.
(3)原不等式可化为x2-2x+3>0,
由于Δ<0,方程x2-2x+3=0无解,
∴不等式-x2+2x-3<0的解集为R.
(4)原不等式可化为3x2-5x+2<0,
由于Δ>0,方程3x2-5x+2=0的两根为x1=,x2=1,
∴不等式-3x2+5x-2>0的解集为.
含参数的一元二次不等式的解法
【例2】 解关于x的不等式ax2-(a+1)x+1<0.
[思路点拨] ①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?
[解] 当a=0时,原不等式可化为x>1.
当a≠0时,原不等式可化为(ax-1)(x-1)<0.
当a<0时,不等式可化为(x-1)>0,
∵<1,∴x<或x>1.
当a>0时,原不等式可化为(x-1)<0.
若<1,即a>1,则
若=1,即a=1,则x∈∅;
若>1,即0 综上所述,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为{x|x>1};当01时,原不等式的解集为.
解含参数的一元二次不等式的一般步骤
提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.
2.解关于x的不等式:ax2-2≥2x-ax(a<0).
[解] 原不等式移项得ax2+(a-2)x-2≥0,
化简为(x+1)(ax-2)≥0.
∵a<0,∴(x+1)≤0.
当-2 当a=-2时,x=-1;
当a<-2时,-1≤x≤.
综上所述,
当-2 当a=-2时,解集为{x|x=-1};
当a<-2时,解集为.
三个“二次”的关系
[探究问题]
1.利用函数y=x2-2x-3的图象说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?
提示:y=x2-2x-3的图象如图所示.
函数y=x2-2x-3的值满足y>0时自变量x组成的集合,亦即二次函数y=x2-2x-3的图象在x轴上方时点的横坐标x的集合{x|x<-1或x>3};同理,满足y<0时x的取值集合为{x|-1
方程ax2+bx+c=0(a≠0)和不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)是函数y=ax2+bx+c(a≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y=0时,函数y=ax2+bx+c(a≠0)就转化为方程,当y>0或y<0时,就转化为一元二次不等式.
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}.
不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x-3>0解集的端点值恰好是方程x2-2x-3=0的根.
3.设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|xx2},{x|x1
提示:一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|xx2},{x|x1
【例3】 已知关于x的不等式ax2+bx+c>0的解集为{x|2
[思路点拨] →→→→
[解] 法一:由不等式ax2+bx+c>0的解集为{x|20,即x2-x+>0,解得x<或x>,所以不等式cx2+bx+a<0的解集为.
法二:由不等式ax2+bx+c>0的解集为{x|2
1.(变结论)本例中的条件不变,求关于x的不等式cx2-bx+a>0的解集.
[解] 由根与系数的关系知=-5,=6且a<0.
∴c<0,=-,故不等式cx2-bx+a>0,
即x2-x+<0,即x2+x+<0.
解之得.
2.(变条件)若将本例中的条件“关于x的不等式ax2+bx+c>0的解集为{x|2
[解] 法一:由ax2+bx+c≥0的解集为知a<0.又×2=<0,则c>0.
又-,2为方程ax2+bx+c=0的两个根,
∴-=,∴=-.
又=-,∴b=-a,c=-a,
∴不等式变为x2+x+a<0,
即2ax2+5ax-3a>0.
又∵a<0,∴2x2+5x-3<0,
所求不等式的解集为.
法二:由已知得a<0 且+2=-,×2=知c>0,
设方程cx2+bx+a=0的两根分别为x1,x2,
则x1+x2=-,x1·x2=,
其中==-,
-===+=-,
∴x1==-3,x2=.
∴不等式cx2+bx+a<0的解集为.
已知以a,b,c为参数的不等式(如ax2+bx+c>0)的解集,求解其他不等式的解集时,一般遵循:
(1)根据解集来判断二次项系数的符号;
(2)根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;
(3)约去 a,将不等式化为具体的一元二次不等式求解.
1.解一元二次不等式的常见方法
(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:
①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);
②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图象的简图;
③由图象得出不等式的解集.
(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.
当m
若(x-m)(x-n)<0,则可得{x|m<x<n}.
有口诀如下:大于取两边,小于取中间.
2.含参数的一元二次型的不等式
在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑
(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.
(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).
(3)关于不等式对应的方程根的大小的讨论:x1>x2,
x1=x2,x1<x2.
3.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.
1.思考辨析
(1)mx2-5x<0是一元二次不等式.( )
(2)若a>0,则一元二次不等式ax2+1>0无解.( )
(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1
(4)不等式x2-2x+3>0的解集为R.( )
[提示] (1)错误.当m=0时,是一元一次不等式;当m≠0时,是一元二次不等式.
(2)错误.因为a>0,所以不等式ax2+1>0恒成立,即原不等式的解集为R.
(3)错误.当a>0时,ax2+bx+c<0的解集为{x|x1
(4)正确.因为Δ=(-2)2-12<0,所以不等式x2-2x+3>0的解集为R.
[答案] (1)× (2)× (3)× (4)√
2.设a<-1,则关于x的不等式a(x-a)<0的解集为________.
[因为a<-1,所以a(x-a)·<0⇔(x-a)·>0.又a<-1,所以>a,所以x>或x
3.已知关于x的不等式ax2+bx+c<0的解集是,则ax2-bx+c>0的解集为________.
[由题意,-2,-是方程ax2+bx+c=0的两个根且a<0,
故解得a=c,b=a.
所以不等式ax2-bx+c>0,即为2x2-5x+2<0,
解得0的解集为.]
4.解下列不等式:
(1)x(7-x)≥12;
(2)x2>2(x-1).
[解] (1)原不等式可化为x2-7x+12≤0,因为方程x2-7x+12=0的两根为x1=3,x2=4,
所以原不等式的解集为{x|3≤x≤4}.
(2)原不等式可以化为x2-2x+2>0,
因为判别式Δ=4-8=-4<0,方程x2-2x+2=0无实根,而抛物线y=x2-2x+2的图象开口向上,
所以原不等式的解集为R.
2.3 二次函数与一元二次方程、不等式
第1课时 一元二次不等式及其解法
学 习 目 标
核 心 素 养
1.掌握一元二次不等式的解法(重点).
2.能根据“三个二次”之间的关系解决简单问题(难点).
通过一元二次不等式的学习,培养数学运算素养.
1.一元二次不等式的概念
只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.
2.一元二次不等式的一般形式
(1)ax2+bx+c>0(a≠0).
(2)ax2+bx+c≥0(a≠0).
(3)ax2+bx+c<0(a≠0).
(4)ax2+bx+c≤0(a≠0).
思考1:不等式x2-y2>0是一元二次不等式吗?
提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.
3.一元二次不等式的解与解集
使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.
思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?
提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.
4.三个“二次”的关系
设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
解不等式y>0或y<0的步骤
求方程y=0的解
有两个不相等的实数根x1,x2(x1<x2)
有两个相等的实数根x1=x2=-
没有
实数根
画函数y=ax2+bx+c(a>0)的图象
得等的集不式解
y>0
{x|x<x1_或x>x2}
R
y<0
{x|x1<x<x2}
∅
∅
思考3:若一元二次不等式ax2+x-1>0的解集为R,则实数a应满足什么条件?
提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R.
1.不等式3+5x-2x2≤0的解集为( )
A.
B.
C.
D.R
C [3+5x-2x2≤0⇒2x2-5x-3≥0⇒(x-3)(2x+1)≥0⇒x≥3或x≤-.]
2.不等式3x2-2x+1>0的解集为( )
A. B.
C.∅ D.R
D [因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x2-2x+1>0的解集为R.]
3.不等式x2-2x-5>2x的解集是________.
{x|x>5或x<-1} [由x2-2x-5>2x,得x2-4x-5>0,因为x2-4x-5=0的两根为-1,5,
故x2-4x-5>0的解集为{x|x<-1或x>5}.]
4.不等式-3x2+5x-4>0的解集为________.
∅ [原不等式变形为3x2-5x+4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x2-5x+4=0无解.
由函数y=3x2-5x+4的图象可知,3x2-5x+4<0的解集为∅.]
一元二次不等式的解法
【例1】 解下列不等式:
(1)2x2+7x+3>0;
(2)-4x2+18x-≥0;
(3)-2x2+3x-2<0.
[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x+3=0有两个不等实根x1=-3,x2=-.又二次函数y=2x2+7x+3的图象开口向上,所以原不等式的解集为.
(2)原不等式可化为2≤0,所以原不等式的解集为.
(3)原不等式可化为2x2-3x+2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x+2=0无实根,又二次函数y=2x2-3x+2的图象开口向上,所以原不等式的解集为R.
解不含参数的一元二次不等式的一般步骤
(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.
(2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.
(3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根.
(4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图.
(5)写解集.根据图象写出不等式的解集.
1.解下列不等式
(1)2x2-3x-2>0;
(2)x2-4x+4>0;
(3)-x2+2x-3<0;
(4)-3x2+5x-2>0.
[解] (1)∵Δ>0,方程2x2-3x-2=0的根是x1=-,x2=2,
∴不等式2x2-3x-2>0的解集为
.
(2)∵Δ=0,方程x2-4x+4=0的根是x1=x2=2,
∴不等式x2-4x+4>0的解集为.
(3)原不等式可化为x2-2x+3>0,
由于Δ<0,方程x2-2x+3=0无解,
∴不等式-x2+2x-3<0的解集为R.
(4)原不等式可化为3x2-5x+2<0,
由于Δ>0,方程3x2-5x+2=0的两根为x1=,x2=1,
∴不等式-3x2+5x-2>0的解集为.
含参数的一元二次不等式的解法
【例2】 解关于x的不等式ax2-(a+1)x+1<0.
[思路点拨] ①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?
[解] 当a=0时,原不等式可化为x>1.
当a≠0时,原不等式可化为(ax-1)(x-1)<0.
当a<0时,不等式可化为(x-1)>0,
∵<1,∴x<或x>1.
当a>0时,原不等式可化为(x-1)<0.
若<1,即a>1,则
若>1,即0 综上所述,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为{x|x>1};当01时,原不等式的解集为.
解含参数的一元二次不等式的一般步骤
提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.
2.解关于x的不等式:ax2-2≥2x-ax(a<0).
[解] 原不等式移项得ax2+(a-2)x-2≥0,
化简为(x+1)(ax-2)≥0.
∵a<0,∴(x+1)≤0.
当-2 当a=-2时,x=-1;
当a<-2时,-1≤x≤.
综上所述,
当-2 当a=-2时,解集为{x|x=-1};
当a<-2时,解集为.
三个“二次”的关系
[探究问题]
1.利用函数y=x2-2x-3的图象说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?
提示:y=x2-2x-3的图象如图所示.
函数y=x2-2x-3的值满足y>0时自变量x组成的集合,亦即二次函数y=x2-2x-3的图象在x轴上方时点的横坐标x的集合{x|x<-1或x>3};同理,满足y<0时x的取值集合为{x|-1
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}.
不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x-3>0解集的端点值恰好是方程x2-2x-3=0的根.
3.设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|x
[解] 法一:由不等式ax2+bx+c>0的解集为{x|2
法二:由不等式ax2+bx+c>0的解集为{x|2
1.(变结论)本例中的条件不变,求关于x的不等式cx2-bx+a>0的解集.
[解] 由根与系数的关系知=-5,=6且a<0.
∴c<0,=-,故不等式cx2-bx+a>0,
即x2-x+<0,即x2+x+<0.
解之得.
2.(变条件)若将本例中的条件“关于x的不等式ax2+bx+c>0的解集为{x|2
又-,2为方程ax2+bx+c=0的两个根,
∴-=,∴=-.
又=-,∴b=-a,c=-a,
∴不等式变为x2+x+a<0,
即2ax2+5ax-3a>0.
又∵a<0,∴2x2+5x-3<0,
所求不等式的解集为.
法二:由已知得a<0 且+2=-,×2=知c>0,
设方程cx2+bx+a=0的两根分别为x1,x2,
则x1+x2=-,x1·x2=,
其中==-,
-===+=-,
∴x1==-3,x2=.
∴不等式cx2+bx+a<0的解集为.
已知以a,b,c为参数的不等式(如ax2+bx+c>0)的解集,求解其他不等式的解集时,一般遵循:
(1)根据解集来判断二次项系数的符号;
(2)根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;
(3)约去 a,将不等式化为具体的一元二次不等式求解.
1.解一元二次不等式的常见方法
(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:
①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);
②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图象的简图;
③由图象得出不等式的解集.
(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.
当m
有口诀如下:大于取两边,小于取中间.
2.含参数的一元二次型的不等式
在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑
(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.
(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).
(3)关于不等式对应的方程根的大小的讨论:x1>x2,
x1=x2,x1<x2.
3.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.
1.思考辨析
(1)mx2-5x<0是一元二次不等式.( )
(2)若a>0,则一元二次不等式ax2+1>0无解.( )
(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1
[提示] (1)错误.当m=0时,是一元一次不等式;当m≠0时,是一元二次不等式.
(2)错误.因为a>0,所以不等式ax2+1>0恒成立,即原不等式的解集为R.
(3)错误.当a>0时,ax2+bx+c<0的解集为{x|x1
[答案] (1)× (2)× (3)× (4)√
2.设a<-1,则关于x的不等式a(x-a)<0的解集为________.
[因为a<-1,所以a(x-a)·<0⇔(x-a)·>0.又a<-1,所以>a,所以x>或x
[由题意,-2,-是方程ax2+bx+c=0的两个根且a<0,
故解得a=c,b=a.
所以不等式ax2-bx+c>0,即为2x2-5x+2<0,
解得
4.解下列不等式:
(1)x(7-x)≥12;
(2)x2>2(x-1).
[解] (1)原不等式可化为x2-7x+12≤0,因为方程x2-7x+12=0的两根为x1=3,x2=4,
所以原不等式的解集为{x|3≤x≤4}.
(2)原不等式可以化为x2-2x+2>0,
因为判别式Δ=4-8=-4<0,方程x2-2x+2=0无实根,而抛物线y=x2-2x+2的图象开口向上,
所以原不等式的解集为R.
相关资料
更多