人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式本章综合与测试学案及答案
展开微专题3 不等式恒成立、能成立问题
在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理、数学运算等素养.
一、“Δ”法解决恒成立问题
例1 (1)已知不等式kx2+2kx-(k+2)<0恒成立,求实数k的取值范围;
(2)若不等式-x2+2x+3≤a2-3a对任意实数x恒成立,求实数a的取值范围.
解 (1)当k=0时,原不等式化为-2<0,显然符合题意.
当k≠0时,令y=kx2+2kx-(k+2),由y<0恒成立,
∴其图象都在x轴的下方,
即开口向下,且与x轴无交点.
∴解得-1<k<0.
综上,实数k的取值范围是{k|-1<k≤0}.
(2)原不等式可化为x2-2x+a2-3a-3≥0,
∵该不等式对任意实数x恒成立,∴Δ≤0,
即4-4(a2-3a-3)≤0,即a2-3a-4≥0,
解得a≤-1或a≥4,
∴实数a的取值范围是{a|a≤-1或a≥4}.
反思感悟 (1)如图①,一元二次不等式ax2+bx+c>0(a≠0)在R上恒成立⇔一元二次不等式ax2+bx+c>0(a≠0)的解集为R⇔二次函数y=ax2+bx+c(a≠0)的图象恒在x轴上方⇔ymin>0⇔
(2)如图②,一元二次不等式ax2+bx+c<0(a≠0)在R上恒成立⇔一元二次不等式ax2+bx+c<0(a≠0)的解集为R⇔二次函数y=ax2+bx+c(a≠0)的图象恒在x轴下方⇔ymax<0⇔
二、数形结合法解决恒成立问题
例2 当1≤x≤2时,不等式x2+mx+4<0恒成立,求m的取值范围.
解 令y=x2+mx+4.
∵当1≤x≤2时,y<0恒成立.
∴x2+mx+4=0的根一个小于1,另一个大于2.
如图,得
∴
∴m的取值范围是{m|m<-5}.
反思感悟 结合函数的图象将问题转化为函数图象的对称轴,端点的函数值或函数图象的位置(相对于x轴)关系求解.可结合相应一元二次方程根的分布解决问题.
三、分离参数法解决恒成立问题
例3 设函数y=mx2-mx-1,1≤x≤3,若y<-m+5恒成立,求m的取值范围.
解 y<-m+5恒成立,
即m(x2-x+1)-6<0恒成立,
∵x2-x+1=2+>0,
又m(x2-x+1)-6<0,
∴m<.
∵y==在1≤x≤3上的最小值为,
∴只需m<即可.
反思感悟 通过分离参数将不等式恒成立问题转化为求函数最值问题.
四、主参换位法解决恒成立问题
例4 已知函数y=mx2-mx-6+m,若对于1≤m≤3,y<0恒成立,求实数x的取值范围.
解 y<0⇔mx2-mx-6+m<0⇔(x2-x+1)m-6<0.
∵1≤m≤3,
∴x2-x+1<恒成立,
∴x2-x+1<⇔x2-x-1<0⇔<x<.
∴x的取值范围为.
反思感悟 转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.
五、利用图象解决能成立问题
例5 当1<x<2时,关于x的不等式x2+mx+4>0有解,则实数m的取值范围为________.
答案 {m|m>-5}
解析 记y=x2+mx+4,则由二次函数的图象知,不等式x2+mx+4>0(1<x<2)一定有解,即m+5>0或2m+8>0,解得m>-5.
反思感悟 结合二次函数的图象,将问题转化为端点值的问题解决.
六、转化为函数的最值解决能成立问题
例6 若存在x∈R,使得≥2成立,求实数m的取值范围.
解 ∵x2-2x+3=(x-1)2+2>0,
∴4x+m≥2(x2-2x+3)能成立,
∴m≥2x2-8x+6能成立,
令y=2x2-8x+6=2(x-2)2-2≥-2,
∴m≥-2,∴m的取值范围为{m|m≥-2}.
反思感悟 能成立问题可以转化为m>ymin或m<ymax的形式,从而求y的最大值与最小值,从而求得参数的取值范围.
人教A版高考数学一轮总复习第3章第2节第4课时利用导数研究不等式恒成立(能成立)问题课时学案: 这是一份人教A版高考数学一轮总复习第3章第2节第4课时利用导数研究不等式恒成立(能成立)问题课时学案,共14页。
高中数学讲义微专题24 恒成立问题——最值分析法(含恒成立综合习题)学案: 这是一份高中数学讲义微专题24 恒成立问题——最值分析法(含恒成立综合习题)学案,共33页。学案主要包含了基础知识,典型例题,近年模拟题题目精选等内容,欢迎下载使用。
高中数学讲义微专题22 恒成立问题——参变分离法学案: 这是一份高中数学讲义微专题22 恒成立问题——参变分离法学案,共9页。学案主要包含了基础知识,典型例题等内容,欢迎下载使用。