初中数学人教版九年级上册22.3 实际问题与二次函数精品巩固练习
展开2023年人教版数学九年级上册
《实际问题与二次函数》专项练习
一 、选择题
1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为( )
A.y=-10x2-560x+7 350
B.y=-10x2+560x-7 350
C.y=-10x2+350x
D.y=-10x2+350x-7 350
2.国家决定对某药品价格分两次降价,若设平均每次降价的百分比为x,该药品的原价为36元,降价后的价格为y元,则y与x之间的函数关系式为( )
A.y=72(1﹣x) B.y=36(1﹣x) C.y=36(1﹣x2) D.y=36(1﹣x)2
3.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为( )
A.y=36(1﹣x) B.y=36(1+x) C.y=18(1﹣x)2 D.y=18(1+x2)
4.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )
A.y=﹣2x2 B.y=2x2 C.y=﹣x2 D.y=x2
5.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y元与销售单价x元满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为( )
A.30元 B.35元 C.40元 D.45元
6.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )
A.3 s B.4 s C.5 s D.6 s
7.在1-7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( ).
A.1月份 B.2月份 C.5月份 D.7月份
8.一个小球被抛出后,如果距离地面的高度h(m)和运动时间t(s)的函数表达式为h=-5t2+10t+1,那么小球到达最高点时距离地面的高度是( ).
A.1m B.3m C.5m D.6m
9.如图,某工厂大门是抛物线形水泥建筑,大门底部地面宽4米,顶部距地面的高度为4.4米,现有一辆满载货物的汽车欲通过大门,其装货宽度为2.4米,该车要想通过此门,装货后的高度应小于( )
A.2.80米 B.2.816米 C.2.82米 D.2.826米
10.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( ).
A.30万元 B.40万元 C.45万元 D.46万元
11.某产品的进货价格为90元,按100元一个售出时,能售500个;如果这种商品每涨价1元,其销售量就减少10个.为了获得最大利润,其定价应为( ).
A.130元 B.120元 C.110元 D.100元
12.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=-x2+2x+.
则下列结论:
(1)柱子OA的高度为m;
(2)喷出的水流距柱子1 m处达到最大高度;
(3)喷出的水流距水平面的最大高度是 m;
(4)水池的半径至少要m才能使喷出的水流不至于落在水池外.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
二 、填空题
13.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是 .
14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是 .
15.用一根长为8 m的木条,做一个矩形的窗框.如果这个矩形窗框宽为x m,那么这个窗户的面积y(m2)与x(m)之间的函数关系式为 (不写自变量的取值范围).
16.如图,一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称,AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.右轮廓线DFE所在抛物线二次函数表达式为 .
17.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向点B以2 cm/s的速度运动,点Q从点B开始沿BC向点C以1 cm/s的速度运动,如果点P,Q分别从点A,B同时出发,当△PBQ的面积最大时,运动时间为________s.
18.如图,一大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx+c,小王骑自行车从O匀速沿直线到拱梁一端A,再匀速通过拱梁部分的桥面AC,小王从O到A用了2秒,当小王骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面AC共需 秒.
三 、解答题
19.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)设计费能达到24000元吗?为什么?
(3)当x是多少米时,设计费最多?最多是多少元?
20.农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.
21.在今年“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?并求出这个最大利润.
22.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.
(1)求年销售量y与销售单价x的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
23.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房,根据合作社提供的房间单价x(元/间)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象,如图所示.
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,当房价定为多少时,合作社每天获利最大?最大利润是多少?
24.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
25.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.莫小贝按照政策投资销售本市生产的一种品牌衬衫.已知这种品牌衬衫的成本价为每件120元,出厂价为每件165元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣3x+900.
(1)莫小贝在开始创业的第1个月将销售单价定为180元,那么政府这个月为他承担的总差价为多少元?
(2)设莫小贝获得的利润为w(元),当销售单价为多少元时,每月可获得最大利润?
(3)物价部门规定,这种品牌衬衫的销售单价不得高于250元,如果莫小贝想要每月获得的利润不低于19500元,那么政府每个月为他承担的总差价最少为多少元?
答案
1.B
2.D
3.C
4.C
5.B
6.B.
7.C
8.D.
9.B.
10.D.
11.B.
12.C.
13.答案为:S=﹣2x2+10x
14.答案为:y=﹣(x+6)2+4;
15.答案为:y=-x2+4x
16.答案为:y=(x-3)2.
17.答案为:2.
18.答案为:26.
19.解:(1)∵矩形的一边为x米,周长为16米,
∴另一边长为(8﹣x)米,
∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;
(2)能,
∵设计费能达到24000元,
∴当设计费为24000元时,面积为24000÷200=12(平方米),
即﹣x2+8x=12,解得:x=2或x=6,
∴设计费能达到24000元.
(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,
∴当x=4时,S最大值=16,
∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.
20.解:(1)40﹣25=15故矩形的宽为
∴sABCD=×25=187.5
(2)设利用xm的墙作为矩形羊圈的长,则宽为(20-x)m,
设矩形的面积为ym2
则y=x•(20-x)=﹣x2+20x=﹣(x﹣20)2+200,
∵a=﹣<0,故当x=20时,y的最大值为200,
∵200>187.5,
故张大伯设计不合理,应设计为长20m,宽10m利用20m墙的矩形羊圈.
21.解:(1)根据题意,设y与x之间的函数详解式为y=kx+b,
将x=24、y=36和x=29、y=21代入,得:
,解得:,
∴y与x之间的函数详解式为y=﹣3x+108;
(2)P=(x﹣20)(﹣3x+108)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192,
∵a=﹣3<0,
∴当x=28时,P取得最大值,最大值为192,
答:销售价格定为28元时,才能使每天获得的利润P最大,最大利润为192元.
22.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),
将(40,600)、(45,550)代入y=kx+b,得:
,解得:,
∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.
(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,
根据题意得:(x﹣30)(﹣10x+1000)=10000,
整理,得:x2﹣130x+4000=0,
解得:x1=50,x2=80.
∵此设备的销售单价不得高于70万元,
∴x=50.
答:该设备的销售单价应是50万元/台.
23.解:(1)设y与x之间的函数关系式为y=kx+b,
由题意得解得
即y与x之间的函数关系式为y=﹣x+110.
(2)设利润为W元,则W=(x﹣20)y=(x﹣20)(﹣x+110)=﹣(x﹣120)2+5000.
∵60≤x≤150,
∴当x=120时,W最大=5000.
即当房价定为120元/间时,合作社每天获利最大,最大利润为5000元.
24.解:(1)设y=kx+b,把(22,36)与(24,32)代入得:
,解得:,
则y=﹣2x+80;
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,
根据题意得:(x﹣20)y=150,
则(x﹣20)(﹣2x+80)=150,
整理得:x2﹣60x+875=0,
(x﹣25)(x﹣35)=0,解得:x1=25,x2=35,
∵20≤x≤28,
∴x=35(不合题意舍去),
答:每本纪念册的销售单价是25元;
(3)由题意可得:
w=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600
=﹣2(x﹣30)2+200,
此时当x=30时,w最大,
又∵售价不低于20元且不高于28元,
∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣2(28﹣30)2+200=192(元),
答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
25.解:(1)当x=180时,y=﹣3x+900=﹣3×180+900=360,
360×(165﹣120)=16200,即政府这个月为他承担的总差价为16200元.
(2)依题意得,
w=(x﹣120)(﹣3x+900)=﹣3(x﹣210)2+24300
∵a=﹣3<0,
∴当x=210时,w有最大值24300.
即当销售单价定为210元时,每月可获得最大利润24300元.
(3)由题意得:﹣3(x﹣210)2+24300=19500,
解得:x1=250,x2=170.
∵a=﹣2<0,抛物线开口向下,
∴当170≤x≤250时,w≥19500.
设政府每个月为他承担的总差价为p元,
∴p=(165﹣120)×(﹣3x+900)=﹣135x+40500.
∵k=﹣135<0.
∴p随x的增大而减小,
∴当x=250时,p有最小值=6750.
即销售单价定为250元时,政府每个月为他承担的总差价最少为6750元.
人教版九年级上册第二十二章 二次函数22.3 实际问题与二次函数当堂检测题: 这是一份人教版九年级上册第二十二章 二次函数22.3 实际问题与二次函数当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册22.3 实际问题与二次函数课时作业: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数课时作业,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中22.3 实际问题与二次函数精品课时作业: 这是一份初中22.3 实际问题与二次函数精品课时作业,共16页。试卷主要包含了5m,水面宽度为,5mB.22,5时,﹣x2=﹣0,76米时正好通过,所以超过6等内容,欢迎下载使用。