初中数学人教版九年级上册第二十四章 圆24.4 弧长和扇形面积习题
展开2023年人教版数学九年级上册
《24.4 弧长及扇形的面积》基础巩固卷
一 、选择题
1.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是( )
A.90° B.120° C.180° D.135°
2.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( )
A.3π B.4π C.5π D.6π
3.若将半径为12 cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( )
A.2 cm B.3 cm C.4 cm D.6 cm
4.将弧长为2π cm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是( )
A. cm,3π cm2 B.2 cm,3π cm2
C.2 cm,6π cm2 D. cm,6π cm2
5.一个扇形的弧长是10π cm,面积是60π cm2,则此扇形的圆心角的度数是( )
A.300° B.150° C.120° D.75°
6.如图,从一块直径BC是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,则圆锥的高是( )
A.4 B.4 C. D.
7.如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,点E在BC的延长线上,则阴影部分的面积为( )
A.6π﹣4 B.6π﹣8 C.8π﹣4 D.8π﹣8
8.如图,CD为⊙O直径,弦AB⊥CD,垂足为M.若AB=12,OM∶MD=5∶8,则⊙O周长为( )
A.26π B.13π C. D.
9.如图,AB 为⊙O 的切线,切点为 B,连接 AO 与⊙O 交与点 C,BD 为⊙O 的直径,连接 CD,若∠A=30°,OA=2,则图中阴影部分的面积为( )
A.﹣ B.π﹣2 C.π﹣ D.π﹣
10.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )
A.π B.π﹣ C.2+ D.2﹣
二 、填空题
11.如图,点A,B,C在⊙O上,⊙O的半径为9,的长为2π,则∠ACB的大小是 .
12.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是 度.
13.已知圆锥的底面圆半径为3 cm、高为4 cm,则圆锥的侧面积是 cm2.
14.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,则圆锥的侧面积为 .
15.有一个圆柱,它高等于12 cm,底面半径等于3 cm,如图,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,则它沿圆柱侧面爬行最短路程是 cm(π取3).
16.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为 .
三 、解答题
17.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求的长.
18.如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.
19.如图是一粮囤的示意图,其顶部是一圆锥,底部是一圆柱.
(1)画出该粮囤的三视图;
(2)若这个圆锥的底面周长为32 m,母线长为7 m,为防雨需要在粮囤顶部铺上油毡,则需要多少平方米油毡(油毡接缝重合部分不计)?
(3)若这个圆柱的底面圆半径为8 m,高为5 m,粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?
20.如图,一个用卡纸做成的圆饼状图形放置在V形架中,CA和CB都是⊙O的切线,切点分别是A,B,⊙O的半径为2 cm,AB=6 cm.
(1)求∠ACB的度数;
(2)若将扇形AOB做成一个圆锥,求此圆锥的底面圆半径.
21.如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.
(1)求证:∠CAD=∠BAD;
(2)若⊙O的半径为1,∠B=50°,求的长.
22.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠CAE=∠B=60°.
(1)求∠ADC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
23.如图所示,已知圆锥底面半径r=10cm,母线长为40cm.
(1)求它的侧面展开图的圆心角和表面积.
(2)若一甲出从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么?
答案
1.C
2.B
3.D.
4.B.
5.B
6.D
7.A
8.B
9.A.
10.D.
11.答案为:20°.
12.答案为:150.
13.答案为:15π.
14.答案为:2π
15.答案为:15.
16.答案为:9π.
17.解:(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°.
∵OC∥BD,
∴∠AEO=∠ADB=90°,即OC⊥AD,
∴AE=ED.
(2)∵OC⊥AD,∴=,
∴∠ABC=∠CBD=36°,
∴∠AOC=2∠ABC=2×36°=72°,
∴==2π.
18.解:设圆锥的母线长为l,底面半径为r,
则πl=2πr,∴l=2r,
∴母线与高的夹角的正弦值==,
∴母线AB与高AO的夹角30°.
19.解:(1)略.
(2)×32×7=112(m2).故需要112 m2油毡.
(3)π×82×5=320π(m3).故最多可以存放320π m3粮食.
20.解:(1)如图,过点O作OD⊥AB于点D.
∵CA,CB是⊙O的切线,
∴∠OAC=∠OBC=90°.
∵AB=6 cm,
∴BD=3 cm.
在Rt△OBD中,
∵OB=2 cm,
∴OD= cm,
∴∠OBD=30°,
∴∠BOD=60°,
∴∠AOB=120°,
∴∠ACB=60°.
(2)的长为=.
设圆锥底面圆的半径为r cm,
则2πr=,
∴r=,即圆锥的底面圆半径为 cm.
21.(1)证明:∵点O是圆心,OD⊥BC,
∴,
∴∠CAD=∠BAD;
(2)连接CO,
∵∠B=50°,
∴∠AOC=100°,
∴的长为:L=.
22.解:(1)∵∠ABC与∠ADC都是弧AC所对的圆周角,
∴∠ADC=∠B=60°.
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC=30°.
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE.
∴AE是⊙O的切线.
(3)略.
23.解:(1)=2π×10,
解得n=90.
圆锥侧面展开图的表面积=π×102+π×10×40=500πcm2.
(2)如右图,由圆锥的侧面展开图可见,甲虫从A点出发沿着圆锥侧面绕行到母线SA的中点B所走的最短路线是线段AB的长.
在Rt△ASB中,SA=40,SB=20,
∴AB=20(cm).
∴甲虫走的最短路线的长度是20cm.
人教版九年级上册24.4 弧长和扇形面积达标测试: 这是一份人教版九年级上册24.4 弧长和扇形面积达标测试,共11页。
初中数学人教版九年级上册24.4 弧长和扇形面积同步测试题: 这是一份初中数学人教版九年级上册24.4 弧长和扇形面积同步测试题,共13页。试卷主要包含了4 弧长及扇形的面积》分层练习等内容,欢迎下载使用。
初中数学人教版九年级上册24.4 弧长及扇形的面积精品精练: 这是一份初中数学人教版九年级上册24.4 弧长及扇形的面积精品精练,共10页。试卷主要包含了4 弧长及扇形的面积》同步精炼等内容,欢迎下载使用。