- 7.3.2离散型随机变量的方差(精练)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册) 试卷 0 次下载
- 7.4.1二项分布(精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册) 试卷 0 次下载
- 7.4.2 超几何分布 (精练)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册) 试卷 0 次下载
- 7.4.2 超几何分布 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册) 试卷 0 次下载
- 7.5 正态分布 (精练)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册) 试卷 0 次下载
人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布优秀课时作业
展开7.4.1 二项分布 (精练)
A夯实基础 B能力提升 C综合素养
A夯实基础
一、单选题
1.(2022秋·新疆省直辖县级单位·高二新疆石河子一中校考阶段练习)已知随机变量服从二项分布,则等于( )
A. B. C. D.
2.(2022秋·广东佛山·高二佛山市南海区九江中学校考阶段练习)已知随机变量,且,则( )
A. B. C. D.
3.(2022秋·黑龙江哈尔滨·高二哈尔滨工业大学附属中学校校考期中)若离散型随机变量,则和分别为( )
A., B.,
C., D.,
4.(2022秋·广东梅州·高二校考阶段练习)设随机变量,若,,则参数的值分别为( )
A.12,0.4 B.12,0.6 C.6,0.4 D.6,0.6
5.(2022·浙江·模拟预测)若离散型随机变量,,且,则为( )
A. B. C. D.
6.(2022·全国·高三专题练习)在某独立重复实验中,事件,相互独立,且在一次实验中,事件发生的概率为,事件发生的概率为,其中.若进行次实验,记事件发生的次数为,事件发生的次数为,事件发生的次数为,则下列说法正确的是( )
A. B.
C. D.
7.(2022秋·福建福州·高二福州三中校考期末)为了保障我国民众的身体健康,产品在进入市场前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售,已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互之间没有影响,若产品可以销售,则每件产品获利40元,若产品不能销售,则每件产品亏损80元,已知一轮中有4件产品,记一箱产品获利X元,则等于( )
A. B. C. D.
8.(2022秋·辽宁沈阳·高二东北育才学校校考阶段练习)高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子如此继续下去,直到滚到底板的一个格子内为止现从入口放进一个白球,则其落在第③个格子的概率为( )
A. B. C. D.
二、多选题
9.(2022·全国·高三开学考试)已知随机变量,则( )
A.
B.
C.从装有3个红球、9个黑球的袋中一次性摸出3个球,则可表示摸出的红球个数
D.桐人和茅场晶彦进行3场决斗,且桐人每场决斗的胜率均为(不存在平手),则可表示桐人的胜场数
10.(2022秋·全国·高二期末)已知展开式的二项式系数和为64,离散型随机变量,则下列命题中正确的有( )
A.
B.当时,取得最大值
C.当时,
D.的最小值为0
三、填空题
11.(2022秋·江西南昌·高二南昌市八一中学校考期末)设随机变量的分布列为,,,,,,且,则______
12.(2022·全国·高三专题练习)在一次以“二项分布的性质”为主题的数学探究活动中,金陵中学高二某小组的学生表现优异,发现的正确结论得到老师和同学们的一致好评.设随机变量,记,,1,2,…,n.在研究的最大值时,该小组同学发现:若为正整数,则时,,此时这两项概率均为最大值;若为非整数,当k取的整数部分,则是唯一的最大值.以此为理论基础,有同学重复投掷一枚质地均匀的骰子并实时记录点数1出现的次数,当投掷到第35次时,记录到此时点数1出现5次,若继续再进行65次投掷试验,则当投掷到第100次时,点数1一共出现的次数为______的概率最大.
四、解答题
13.(2022春·江苏南通·高三统考阶段练习)在一个袋子里有大小一样的6个小球,其中有4个红球和2个白球.
(1)现有放回地每次从中摸出1个球,连摸3次,设摸到红球的次数为X,求随机变量X的概率分布及期望;
(2)现无放回地依次从中摸出1个球,连摸2次,求第二次摸出白球的概率;
(3)若每次任意取出1个球,记录颜色后放回袋中,直到取到两次红球就停止,设取球的次数为Y,求的概率.
14.(2022秋·江苏南京·高二校考期中)近两年肆虐全球的新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.核酸检测是诊断新冠肺炎的重要依据,首先取病人的唾液或咽拭子的样本,再提取唾液或咽拭子样本里的遗传物质,若有病毒,样本检测会呈现阳性,否则为阴性.根据统计发现,疑似病例核酸检测呈阳性的概率为.现有4例疑似病例,分别对其取样、检测,多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有病毒,则混合样本化验结果就会呈阳性,若混合样本呈阳性,则将该组中备份的样本再逐个化验;若混合样本呈阴性,则判定该组各个样本均为阴性,无需再检验.现有以下三种方案:
方案一:逐个化验;
方案二:四个样本混合在一起化验;
方案三:平均分成两组,分别混合在一起化验.
在新冠肺炎爆发初期,由于检查能力不足,化检次数的期望值越小,则方案越“优”.
(1)若按方案一,求4个疑似病例中恰有2例呈阳性的概率;
(2)现将该4例疑似病例样本进行化验,请问:方案一、二、三中哪个最“优”?并说明理由.
B能力提升
15.(2022秋·海南·高二统考期末)青花釉里红,俗称“青花加紫”,是我国珍贵的瓷器品种之一.釉里红的烧制工艺难度较大,因此烧制成功率较低假设釉里红瓷器开窑后经检验分为成品和废品两类,从某工匠烧制的一批釉里红瓷器中,有放回地抽取两次,每次随机抽取1件,取出的2件瓷器中至多有1件是成品的概率为.记从该批瓷器中任取1件是成品的概率为p.
(1)求p的值.
(2)假设该工匠烧制的任意1件这种瓷器是成品的概率均为p,且每件瓷器的烧制相互独立,这种瓷器成品每件利润为10万元,废品的利润为0元.现他烧制3件这种资器,设这3件瓷器的总利润为X万元,求X的分布列及数学期望.
16.(2022·高二课时练习)某中学为宣传《未成年人保护法》.特举行一次《未成年人保护法》知识竞赛.规则如下:两人一组.每一轮竞赛中.小组两人分别答两题.若小组答对题数不小于3.则获得“优秀小组”称号.已知甲、乙两位同学组成一组.且甲同学和乙同学答对每道题的概率分别为..
(1)若..求在第一轮竞赛中.他们获得“优秀小组”称号的概率;
(2)若.且每轮竞赛结果互不影响.如果甲、乙同学想在此次竞赛活动中获得9次“优秀小组”称号.那么理论上至少要进行多少轮竞赛?
C综合素养
17.(2022春·北京西城·高三北京师大附中校考期末)玩具柜台元旦前夕促销,就在12月31日购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送大奖.而每个甲系列盲盒可以开出玩偶,中的一个,每个乙系列盲盒可以开出玩偶,中的一个.
(1)记事件:一次性购买n个甲系列盲盒后集齐玩偶;事件:一次性购买n个乙系列盲盒后集齐,玩偶;求及;
(2)柜台对甲、乙两个系列的盲盒进行饥饿营销,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为,购买乙系列的概率为:而前一次购买甲系列的消费者下一次购买甲系列的概率为,购买乙系列的概率为,前一次购买乙系列的消费者下一次购买甲系列的概率为,购买乙系列的概率为:如此往复,记某人第次购买甲系列的概率为.
①求;
②若礼品店每卖出一个甲系列的盲盒可获利30元,卖出一个乙系列的盲盒可获利20元,由样本估计总体,若礼品店每天可卖出1000个盲盒,且买的人之前都已购买过很多次这两个系列的盲盒,估计该礼品店每天利润为多少元(直接写出答案)
18.(2022春·福建龙岩·高三福建省连城县第一中学校考阶段练习)2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立.若某考生报考甲大学,每门科目通过的概率匀为,该考生报考乙大学,每门科目通过的概率依次,,,其中.
(1)若,求该考生报考乙大学在笔试环节恰好通过两门科目的概率;
(2)“强基计划”规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为决策依据,则当该考生更希望通过乙大学的笔试时,求m的取值范围.
高中数学人教A版 (2019)选择性必修 第三册7.5 正态分布精品课后复习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.5 正态分布精品课后复习题,文件包含75正态分布精讲原卷版docx、75正态分布精讲解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册7.5 正态分布精品巩固练习: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.5 正态分布精品巩固练习,文件包含75正态分布精练原卷版docx、75正态分布精练解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.4 二项分布与超几何分布优秀测试题: 这是一份高中数学人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.4 二项分布与超几何分布优秀测试题,文件包含742超几何分布精练原卷版docx、742超几何分布精练解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。