搜索
    上传资料 赚现金
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      7.1.1 条件概率 (精讲)(原卷版).docx
    • 解析
      7.1.1 条件概率 (精讲)(解析版).docx
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)01
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)02
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)03
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)01
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)02
    7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)03
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式精品课时练习

    展开
    这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式精品课时练习,文件包含711条件概率精讲原卷版docx、711条件概率精讲解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    7.1.1 条件概率 (精讲)

    目录

    一、必备知识分层透析

    二、重点题型分类研究

    题型1: 条件概率的求法

    题型2:乘法公式的应用

    题型3:条件概率的性质及应用

    题型4:独立事件的判断

    题型5:相互独立事件与互斥事件

    题型6:独立事件的乘法公式

    三、高考(模拟)题体验

    一、必备知识分层透析

    知识点1:条件概率

    (1)一般地,设为两个随机事件,且,我们称为在事件发生的条件下,事件发生的条件概率,简称条件概率.

    一般地,每个随机试验都是在一定条件下进行的,这里所说的条件概率是指随机试验结果的部分信息已知(即在原试验条件下,再加上一定的条件),求另一事件在此条件下发生的概率.

    事件在“事件已发生”这个附加条件下的概率与没有这个附加条件下的概率在很多情况下是不同的.

    当题目涉及“在…前提下”等字眼时,一般为条件概率.若题目没有出现上述字眼,但已知事件的发生影响了所求事件的概率,也是条件概率.

    在条件概率的定义中,要强调,当时,不能用这一方法定义事件发生的条件下,事件发生的概率.

    (2)特别说明:

    计算条件概率时,表示事件同时发生的概率,不能随便用事件的概率代替

    在条件概率的表示中,“”之后的部分表示条件;

    的意义不同,表示在事件发生的条件下事件发生的概率,而是指在事件发生的条件下事件发生的概率;

    的区别:二者的样本空间不一样,前者的样本空间为“原试验结果”,后者的样本空间为“在原试验条件下,再加上事件发生的条件”,一般地,.

    知识点2:乘法公式

    由条件概率的定义,对任意两个事件,若,则.我们称上式为概率的乘法公式.

    知识点3:条件概率的性质

    条件概率只是缩小了样本空间,因此条件概率同样具有概率的性质.设,则

    如果是两个互斥事件,则

    互为对立事件,则

    ④任何事件的条件概率都在0和1之间,即:.

    知识点4:事件的相互独立性

    (1)事件与事件相互独立:对任意的两个事件,如果成立,则称事件与事件相互独立,简称为独立.

    (2)性质:若事件与事件相互独立,则,,也都相互独立,, .

    (3)易混淆“相互独立”和“事件互斥”

    两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.

    二、重点题型分类研究

    题型1: 条件概率的求法

    典型例题

    例题1.(2023·全国·高三专题练习)已知事件,若,则    

    A. B. C. D.

    例题2.(2023·全国·高三专题练习)有歌唱道:“江西是个好地方,山清水秀好风光.”现有甲、乙两位游客慕名来到江西旅游,准备从庐山、三清山、龙虎山和明月山四个著名旅游景点中随机选择一个景点游玩,记事件为“甲和乙至少一人选择庐山”,事件为“甲和乙选择的景点不同”,则    

    A. B. C. D.

    例题3.(2023·全国·高三专题练习)已知随机事件,则的值为________.

    例题4.(2023春·山东潍坊·高三统考期中)一个盒子中有4个白球,个红球,从中不放回地每次任取1个,连取2次,已知第二次取到红球的条件下,第一次也取到红球的概率为,则________.

    例题5.(2022春·广东汕头·高三统考期末)某足球队为评估球员的场上作用,对球员进行数据分析.球员甲在场上出任边锋、前卫、中场三个位置,根据过往多场比赛,其出场率与出场时球队的胜率如下表所示.

    场上位置

    边锋

    前卫

    中场

    出场率

    0.5

    0.3

    0.2

    球队胜率

    0.6

    0.8

    0.7

    (1)当甲出场比赛时,求球队输球的概率;

    (2)当甲出场比赛时,在球队获胜的条件下,求球员甲担当前卫的概率;

    (3)如果你是教练员,将如何安排球员甲在场上的位置?请说明安排理由.

     

     

     

    同类题型演练

    1.(2023·全国·高三专题练习)已知,则等于(    ).

    A B C D

     

    2.(2023·全国·高三专题练习)为积极应对人口老龄化,2021820日,全国人大常委会会议表决通过了关于修改人口与计划生育法的决定,提倡适龄婚育、优生优育,一对夫妻可以生育三个子女.若已知某个家庭有3个小孩,且其中至少有1个男孩的条件下,则第三个孩子是女孩的概率为___________.

    3.(2023·高二单元测试)由组成的三位编号中,若用表示第二位数字为的事件,用B表示第一位数字为的事件,则___________.

    4.(2023·全国·高三专题练习)袋子中有7个大小相同的小球,其中4个红球,3个黄球,每次从袋子中随机摸出1个小球,摸出的球不再放回,则在第1次摸到红球的条件下,第2次摸到红球的概率是___________.

    5.(2023·全国·高三专题练习)已知是一个三位数,若的十位数字大于个位数字,百位数字大于十位数字,则称为递增数.已知,设事件A组成一个三位数,事件组成的三位数为递增数,则___________.

    6.(2022·甘肃张掖·高二甘肃省民乐县第一中学校考期中)某校从学生文艺部7名成员(43女)中,挑选2人参加学校举办的文艺汇演活动.

    (1)求男生甲被选中的概率;

    (2)在已知男生甲被选中的条件下,女生乙被选中的概率;

    (3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.

     

     

     

    题型2:乘法公式的应用

    典型例题

    例题1.(2022秋·上海普陀·高二曹杨二中校考期末)某地区气象台统计,该地区下雨的概率是,刮风的概率为,在下雨天里,刮风的概率为,则既刮风又下雨的概率为(    

    A. B. C. D.

    例题2.(2022春·上海金山·高三上海市金山中学校考期中)已知,则 _________.

    例题3.(2022·高二课时练习)已知号箱中有个白球和个红球、号箱中有个白球和个红球,现随机从号箱中取出一球放入号箱,然后从号箱中随机取出一球,则两次都取到红球的概率是________.

     

     

    同类题型演练

    1.(2022·广西河池·高二统考期末)已知某种传染性病毒使人感染的概率为0.75,在感染该病毒的条件下确诊的概率为0.64,则感染该病毒且确诊的概率是(    

    A0.40 B0.45 C0.48 D0.50

    2.(2022·高二课时练习)有一批种子的发芽率为0.95,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为______

     

     

    题型3:条件概率的性质及应用

    典型例题

    例题1.(2022春·湖北·高三湖北省仙桃中学校联考阶段练习)已知事件是互斥事件,,则______.

     

    同类题型演练

    1.(2022·全国·高三专题练习)已知,则下列式子成立的是(    

    .

    A①②③④ B C②③ D②④

    2.(2022·全国·高二课时练习)现有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶是红色或黑色的概率.

     

    题型4:独立事件的判断

    典型例题

    例题1.(2023·上海·高三专题练习)若,则事件的关系是(    

    A.事件互斥 B.事件对立

    C.事件相互独立 D.事件既互斥又相互独立

    例题2.(2023·全国·高三专题练习)袋内有个白球和个黑球,从中有放回地摸球,用表示“第一次摸得白球”,如果“第二次摸得白球”记为,“第二次摸得黑球”记为,那么事件间的关系是(    

    A.均相互独立 B.相互独立,互斥

    C.均互斥 D.互斥,相互独立

    例题3.(2022·全国·高三专题练习)如图,一个质地均匀的正八面体的八个面分别标以数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字,设该数字为.若设事件为奇数”,事件为偶数”,事件为3的倍数”,事件”,其中是相互独立事件的是(    

    A.事件与事件 B.事件与事件

    C.事件与事件 D.事件与事件

    例题4(多选)(2023·全国·高三专题练习)袋子中共有大小和质地相同的4个球,其中2个白球和2个黑球,从袋中有放回地依次随机摸出2个球.甲表示事件“第一次摸到白球”,乙表示事件“第二次摸到黑球”,丙表示事件“两次都摸到白球”,则(    

    A.甲与乙互斥 B.乙与丙互斥 C.甲与乙独立 D.甲与乙对立

     

    同类题型演练

    1.(2023·全国·高三专题练习)掷两枚质地均匀的骰子,设A=“第一枚出现的点数大于2”B=“第二枚出现的点数小于6”,则AB的关系为(    

    A.互斥 B.互为对立 C.相互独立 D.相等

    2.(2022·黑龙江哈尔滨·高二哈尔滨市第四中学校校考阶段练习)分别掷两枚质地均匀的硬币,第一枚为正面记为事件第二枚为正面记为事件, 那么事件的关系正确的是(    

    AAB相互独立 BAB互为对立

    CAB互斥 D.以上说法都不正确

    3.(2022·湖南邵阳·高一统考期末)抛掷两枚质地均匀的硬币,设事件M第一枚硬币正面向上N第二枚硬币反面向上,则下列结论中正确的是(    

    AMN是对立事件 BMN是互斥事件

    CMN相互独立 DMN既不互斥也不独立

    4(多选)2022·辽宁大连·高一统考期末)同时掷红、蓝两枚质地均匀的骰子,事件A表示两枚骰子的点数之和为5”,事件B表示红色骰子的点数是偶数,事件C表示两枚骰子的点数相同,事件D表示至少一枚骰子的点数是奇数,则(    

    AAC互斥 BBD对立 CA相互独立 DBC相互独立

     

    题型5:相互独立事件与互斥事件

    典型例题

    例题1.(2022·全国·高一专题练习)袋内有3个白球和2个黑球,从中有放回地摸球,如果“第一次摸得白球”记为事件,“第二次摸得白球”记为事件,那么事件间的关系是(    

    A.均相互独立

    B.相互独立,互斥

    C.均互斥

    D.互斥,相互独立

    例题2.(2022·高二课时练习)若,则事件的关系是(       

    A.事件互斥 B.事件对立

    C.事件相互独立 D.事件互斥又相互独立

    例题3(多选)(2022春·高二校考期中)甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以表示从乙罐中取出的球是红球的事件,下列命题正确的是(    

    A. B.事件与事件相互独立

    C.事件与事件相互独立 D.互斥

     

    同类题型演练

    1.(2022·高二课时练习)抛掷两枚硬币,设事件第一枚正面朝上第二枚反面朝上,则(    

    A.事件AB互斥 B.事件AB互相对立

    C.事件AB相互独立 D.事件AB相等

    2(多选)2022·高二课时练习)抛掷一颗骰子,将结果向上的点数大于3”记为事件结果向上的点数小于4”记为事件结果向上的点数是3的倍数记为事件,则(    

    A对立 B互斥

    C相互独立 D

    3(多选)2022·江苏淮安·高二校考阶段练习)连续抛掷一枚质地均匀的硬币3次,每次结果要么正面向上,要么反面向上,且两种结果等可能.记事件A表示“3次结果中有正面向上,也有反面向上,事件B表示“3次结果中最多一次正面向上,事件C表示“3次结果中没有正面向上,则(    

    AP(AB)= B.事件B与事件C互斥

    C.事件A与事件B独立 D.记C的对立事件为,则P(B|)=

     

    题型6:独立事件的乘法公式

    典型例题

    例题1.(2023春·北京昌平·高一统考期末)已知射击运动员甲击中靶心的概率为,射击运动员乙击中靶心的概率为,且甲、乙两人是否击中靶心互不影响.若甲、乙各射击一次,则至少有一人击中靶心的概率为(    

    A. B. C. D.

    例题2.(2023·高二课时练习)设是两个随机事件,已知,则下列结论中一定成立的是(    ).

    A. B.

    C. D.

    例题3.(2023·全国·高三专题练习)抛掷一枚质地均匀的硬币和一枚质地均匀的骰子各一次,记“硬币正面向上”为事件,“骰子向上的点数是3”为事件,则事件中至少有一件发生的概率是________.

    例题4.(2023·北京房山·高一统考期末)已知甲运动员的投篮命中率为0.8,乙运动员投篮命中率为0.7,甲、乙各投篮一次.设事件为“甲投中”,事件为“乙投中”.

    (1)求甲、乙二人中恰有一人投中的概率;

    (2)求甲、乙二人中至少有一人投中的概率.

     

     

    同类题型演练

    1.(2023·全国·高三专题练习)从盒子中摸出一个黑球的概率是,从盒子摸出一个黑球的概率是,从两个盒子中各摸出一个球,则下列说法中错误的是(    

    A个球都不是黑球的概率为 B个球中恰有个是黑球的概率为

    C个球中至少有个黑球的概率为 D个球中至多有个黑球的概率为

    2.(2023·上海·高三专题练习)已知,则___________.

    3.(2022·上海宝山·统考一模)两个篮球运动员罚球时的命中概率分别是0.60.5,两人各投一次,则他们同时命中的概率是______.

    4.(2022·黑龙江牡丹江·高一牡丹江市第二高级中学校考期末)甲、乙两人同解一道数学题,两人解对的概率分别为,且两人解题互不影响,则两人均未解对的概率为__________

     

    三、高考(模拟)题体验

    1.(2022·吉林长春·统考模拟预测)已知某家族有两种遗传性状,该家族某位成员出现性状的概率为,出现性状的概率为两种遗传性状都不出现的概率为.则该成员在出现性状的条件下,出现性状的概率为(    

    A B C D

    2.(2022·湖南永州·统考一模)现有甲、乙、丙、丁四个人到九嶷山、阳明山、云冰山、舜皇山4处景点旅游,每人只去一处景点,设事件“4个人去的景点各不相同,事件只有甲去了九嶷山,则    

    A B C D

    3(多选)2022·广东广州·统考一模)已知分别为随机事件的对立事件,,则下列结论正确的是(    

    A

    B

    C.若互斥,则

    D.若独立,则

    4(多选)2022·江苏镇江·扬中市第二高级中学校考模拟预测)从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是(    

    A2个球都是红球的概率为

    B2个球不都是红球的概率为

    C.至少有1个红球的概率为

    D2个球中恰有1个红球的概率为

    5(多选)2022·湖北武汉·统考模拟预测)一个质地均匀的正四面体4个表面上分别标有数字1234,抛掷该正四面体两次,记事件第一次向下的数字为12”,事件两次向下的数字之和为奇数,则下列说法正确的是(    

    A.事件发生的概率为

    B.事件与事件互斥

    C.事件与事件相互独立

    D.事件发生的概率为

    6.(2022·黑龙江哈尔滨·哈尔滨市第一二二中学校校考模拟预测)假定生男孩和生女孩是等可能的,某家庭有两个小孩,如果已经知道这个家庭有女孩,则这个两个小孩都是女孩的概率是__________.

    7.(2022·全国·模拟预测)2022北京冬奥会期间,吉祥物冰墩墩成为顶流,吸引了许多人购买,使一难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为,丙购买到冰墩墩的概率为,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为___________.

    8.(2022·天津·统考高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为____________;已知第一次抽到的是A,则第二次抽取A的概率为____________

     

     

     

     

     

     


     

    相关试卷

    高中数学人教A版 (2019)选择性必修 第三册7.5 正态分布精品课后复习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.5 正态分布精品课后复习题,文件包含75正态分布精讲原卷版docx、75正态分布精讲解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布优秀练习题: 这是一份人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布优秀练习题,文件包含742超几何分布精讲原卷版docx、742超几何分布精讲解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布精品复习练习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布精品复习练习题,文件包含741二项分布精讲原卷版docx、741二项分布精讲解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        7.1.1 条件概率 (精讲)-2023-2024学年度高二数学下学期同步精讲精练(人教A版选择性必修第三册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map