所属成套资源:2023版考前三个月冲刺专题练
2023版考前三个月冲刺专题练 第9练 导数与不等式证明【无答案版】
展开这是一份2023版考前三个月冲刺专题练 第9练 导数与不等式证明【无答案版】,共2页。
第9练 导数与不等式证明
[考情分析] 导数与不等式证明是高考考查的重点内容,在解答题中一般会考查函数的单调性、极值和最值的综合运用,试题难度较大,多以压轴题出现.
一、单变量函数不等式的证明
例1 (2022·新高考全国Ⅱ)已知函数f(x)=xeax-ex.
(1)当a=1时,讨论f(x)的单调性;
(2)当x>0时,f(x)<-1,求a的取值范围;
(3)设n∈N*,证明:++…+>ln(n+1).
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
规律方法 用导数证明不等式一般有以下方法
(1)构造函数法.
(2)由结论出发,通过对函数变形,证明不等式.
(3)分成两个函数进行研究.
(4)利用图象的特点证明不等式.
(5)利用放缩法证明不等式.
跟踪训练1 (2022·宜宾第四中学模拟)已知函数f(x)=-ax2+xln x+2.
(1)若f(x)有两个极值点,求实数a的取值范围;
(2)当a=0时,证明:f(x)>x-.
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
二、双变量函数不等式的证明
例2 (2022·全国甲卷)已知函数f(x)=-ln x+x-a.
(1)若f(x)≥0,求a的取值范围;
(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
规律方法 破解含双参不等式的证明的关键:一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是构造函数,借助导数,判断函数的单调性,从而求其值;三是回归含双参的不等式的证明,把所求的最值应用到含参的不等式中,即可证得结果.
跟踪训练2 (2022·绍兴模拟)已知函数f(x)=ex-a-x2(a∈R)有两个极值点x1,x2(x1<x2),其中e=2.718 28…为自然对数的底数.
(1)记f′(x)为f(x)的导函数,证明:f′(1)<0;
(2)证明:<.
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________
相关学案
这是一份2023版考前三个月冲刺专题练 第29练 证明、探究性问题【无答案版】,共3页。
这是一份2023版考前三个月冲刺专题练 第34练 客观题的解法【无答案版】,共5页。
这是一份2023版考前三个月冲刺专题练 第6练 导数的几何意义及函数的单调性【无答案版】,共4页。