第1章 平行线辅导讲义2:平行线及其判定(基础) 知识讲解(含答案)
展开平行线及其判定(基础)知识讲解
撰稿:孙景艳 审稿: 吴婷婷
【学习目标】
1.熟练掌握平行线定义及画法;
2.掌握平行公理及其推论;
3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.
【要点梳理】
要点一、平行线及平行公理
1.平行线的定义
在同一平面内,不相交的两条直线叫做平行线. 两直线平行,用符号“∥”表示. 如下图,两条直线互相平行,记作AB∥CD或a∥b.
要点诠释:
(1)同一平面内,两条直线的位置关系:相交和平行.
(2)互相重合的直线通常看作一条直线,两条线段或射线平行是指它们所在的直线平行.
2.平行线的画法
用直尺和三角板作平行线的步骤:
①落:用三角板的一条斜边与已知直线重合.
②靠:用直尺紧靠三角板一条直角边.
③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.
④画:沿着这条斜边画一条直线,所画直线与已知直线平行.
3.平行公理及推论
平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
要点诠释:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)公理中“有”说明存在;“只有”说明唯一.
(3)“平行公理的推论”也叫平行线的传递性.
4. 两条平行线间的距离
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线
间的距离.
要点诠释:
(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.
(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即两条平行线之间的距离处处相等.
要点二、平行线的判定
判定方法1:同位角相等,两直线平行.如上图,几何语言:
∵ ∠3=∠2
∴ AB∥CD(同位角相等,两直线平行)
判定方法2:内错角相等,两直线平行.如上图,几何语言:
∵ ∠1=∠2
∴ AB∥CD(内错角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
∵ ∠4+∠2=180°
∴ AB∥CD(同旁内角互补,两直线平行)
要点诠释:
(1)平行线的判定是由角相等或互补,得出平行,即由数推形.
(2)今后我们有符号“∵”表示“因为”,用“∴”表示“所以”.
【典型例题】
类型一、平行线及平行公理
1.下列说法中正确的有 ( ) .
①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B 2个 C.3个 D.4个
【答案】 A
【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.
【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.
举一反三:
【变式】如图,在正方体中:
(1)与线段平行的线段_________;
(2)与线段相交的线段______;
(3)与线段既不平行也不相交的线段______.
【答案】
(1)CD、A1B1、C1D1;
(2)BC、BB1、A1A、AD;
(2)A1D1、D1D 、B1C1、CC1.
2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( ) .
A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
【答案】B
【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.
举一反三:
【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为 平方厘米.
【答案】5 提示:连接BF,则得AC∥BF,进而有S阴影=S△ABC .
类型二、平行线的判定
3.(江苏)如图所示,直线a、b被直线c所截,现给出下列四个条件:
①∠1=∠5; ②∠1=∠7; ③∠2+∠3=180°; ④∠4=∠7,其中能判断a∥b的条件的序号是 ( ).
A.①② B.①③ C.①④ D.③④
【思路点拨】根据平行线的判定方法进行判断.
【答案】A
【解析】①由∠1=∠5可推出a∥b,理由是同位角相等,两直线平行.
②∵ ∠1=∠7,又∠7=∠5,
∴ ∠1=∠5,可推出a∥b.
③∠2+∠3=180°不能推出a∥b.
④∠4=∠7不能推出a∥b.
【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.
举一反三:
【变式1】如图,下列条件中,不能判断直线的是( ).
A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°
【答案】B
【高清课堂:平行线及判定 例1】
【变式2】已知,如图,BE平分ABC,CF平分BCD,1=2,求证:AB//CD.
【答案】
证明:∵ 1=2
∴ 21=22 ,即∠ABC=∠BCD
∴ AB//CD (内错角相等,两直线平行)
4.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.
【思路点拨】试着将复杂的图形分解成“基本图形”.
【答案与解析】
解:(1)由∠1=∠3,
可判定AD∥BC(内错角相等,两直线平行);
(2)由∠BAD=∠DCB,∠1=∠3得:
∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4
可以判定AB∥CD(内错角相等,两直线平行).
综上,由(1)(2)可判定:AD∥BC,AB∥CD.
【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.
5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
【答案与解析】
解:这两条直线平行.理由如下:
如图:
∵ b⊥a, c⊥a
∴ ∠1=∠2=90°
∴ b∥c (同位角相等,两直线平行) .
【总结升华】本题的结论可以作为两直线平行的判定方法.
举一反三:
【变式】已知,如图,EFEG,GMEG,1=2,AB与CD平行吗?请说明理由.
【答案】
解:AB∥CD.理由如下:如图:
∵ EFEG,GMEG (已知),
∴ ∠FEQ=∠MGE=90°(垂直的定义).
又∵ ∠1=∠2(已知),
∴ ∠FEQ -∠1=∠MGE -∠2 (等式性质),
即∠3=∠4.
∴ AB∥CD (同位角相等,两直线平行).