人教版七年级上册1.3.1 有理数的加法说课ppt课件
展开1.了解有理数加法的意义,理解有理数加法法则的合理性.Understand the meaning f ratinal number additin and the ratinality f ratinal number additin rules.2.能运用该法则准确进行有理数的加法运算.(重点)Be able t use the additin rules f ratinal numbers accurately.3.探索有理数加法法则的过程,理解并掌握有理数加法的法则.(难点)Explre the prcess f ratinal number additin rule, understand and master the rule f ratinal number additin.
(+1) +(-1)=
动物王国举办奥运会,蚂蚁当火炬手,它第一次从数轴上的原点上向正方向跑一个单位,接着向负方向跑一个单位.蚂蚁经过两次运动后在哪里?如何列算式?
一只可爱的小狗,在一条东西走向的笔直公路上行走,现规定向东为正,向西为负.A lvely little dg walks n a straight east-west rad. It is nw stipulated that East is psitive and West is negative.
如果小狗先向东行走2米,再继续向东行走1米,则小狗两次一共向哪个方向行走了多少米?If the dg walks 2 meters t the East and then cntinues t walk 1 meter t the East, hw many meters did the dg walk ,in which directin?
解:小狗一共向东行走了(2+1)米,写成算是为:
(+2)+(+1)= +(2+1)(m)
如果小狗先向西行走2米,再继续向西行走1米,则小狗两次一共向哪个方向行走了多少米?If the dg walks 2 meters t the West and then cntinues t walk 1 meter t the West, hw many meters did the dg walk, in which directin?
解:两次行走后,小狗向西走了(2+1)米.用算式表示:
(- 2)+(- 1)= -(2 + 1)(m)
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.Add tw numbers with the same sign, take the same sign, and add the abslute values.
有理数加法法则一 Ratinal number additin rule 1:
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?If the dg walks 3 meters t the West and then cntinues t walk 2 meters t the East, hw many meters did the dg walk ,in which directin ?
小狗两次一共向西走了(3-2)米.用算式表示为:
-3+(+2)=-(3-2)(m)
如果小狗先向西行走2米,再继续向东行走3米,则小狗两次一共向哪个方向行走了多少米?If the dg walks 2 meters t the West and then cntinues t walk 3 meters t the East, hw many meters did the dg walk in which directin twice?
小狗两次一共向东走了(3-2)米.用算式表示为:
-2+(+3)=+(3-2)(m)
如果小狗先向西行走2米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?If the dg walks 2 meters t the West and then cntinues t walk 2 meters t the East, hw many meters did the dg walk ,in which directin ?
(-2)+(+2)= 0(m)
解:小狗一共行走了0米.写成算式为:
-2 + (+3) = +(3-2) -3 + (+2)= -(3-2) -2 + (+2)= (2-2)
你从上面三个式子中发现了什么?What d yu find frm the abve three frmulas?
有理数加法法则二:Ratinal number additin rule 2
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.Tw numbers with different signs are added. When the abslute values are equal, the sum is 0; When the abslute values are nt equal, take the sign f the addend with the larger abslute value and subtract the smaller abslute value frm the larger abslute value.
如果小狗先向西行走3米,然后在原地休息,则小狗向哪个方向行走了多少米?If the dg walks 3 meters westward and then rests in place, in which directin did the dg walk ,hw many meters?
小狗向西行走了3米.写成算式为:
(-3)+0= -3(m)
有理数加法法则三:Ratinal number additin rule 3
一个数同0相加,仍得这个数.
有理数加法法则 Ratinal number additin rule
(1)同号两数相加,结果取相同符号,并把绝对值相加.Add tw numbers with the same sign, take the same sign as the result, and add the abslute values.(2)异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值.互为相反数的两个数相加得0.When tw numbers with different signs are added, the sign f the addend with the larger abslute value is taken, and the larger abslute value is subtracted frm the smaller abslute value. The additin f tw ppsite numbers is 0.(3)一个数同0相加,仍得这个数. The additin f a number and 0 is still this number.
Example 1 Calculate:(1)(-4)+(-8);(2)(-5)+13;(3)0+(-7); (4)(-4.7)+4.7.
Slutin:(1)(-4)+(-8) =-(4+8) =-12 (2)(-5)+13=+(13-5)=8 (3)0+(-7)=-7 (4)(-4.7)+3.9=-(4.7-3.9)=-0.8
互为相反意义的量可以全部抵消或部分抵消.Quantities with ppsite meanings can be cancelled in whle r in part.
通过有理数加法法则的学习,你们认为如何进行有理数加法运算呢?Thrugh the study f ratinal number additin rule, hw d yu think t carry ut ratinal number additin?
方法总结:1.先判断类型(同号、异号等)Judge the type first (same sign, different sign, etc.);2.再确定和的符号;Then decide the sign f the sum.3.最后进行绝对值的加减运算.Finally, peratins f abslute value.
Example 2 Given that│a│= 8,│b│= 2; (1)When a、b have the same sign,find the value f a+b;(2)When a、b have the different sign,find the value f a+b.
分析:先根据的a、b符号,分类讨论,再计算a+b的值
解:因为│a│= 8,│b│= 2,所以a= ±8,b= ±2.
(1)因为a、b同号,所以a= 8,b= 2或a= -8,b= -2.
所以a+b= 8+2=10,或a+b=- 8+(-2)=-10.
(2)因为a、b异号,所以a= 8,b=- 2或a= -8,b= 2.
所以a+b= 8+(-2)=6,或a+b=- 8+2=-6.
If |x-3| and |y+2| are ppsite numbers ,find the value f x+y.
解:由题意得|x-3|+|y+2|=0,又|x-3|≥0,|y+2|≥0,所以x-3= 0,y+2=0,所以x=3 ,y=-2.
所以x+y=3-2=1.
例3 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.Example 3 In the ftball rund rbin match, the red team wins the yellw team by 4:1, the yellw team wins the blue team by 1:0, and the blue team wins the red team by 1:0. Calculate the gals f each team.
每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.The ttal number f gals scred by each team is recrded as a psitive number and the ttal number f gals lst is recrded as a negative number. The sum f these tw numbers is the team's gal.三场比赛中,红队共进4球,失2球,净胜球数为In the three games, the red team scred 4 gals, lst 2 gals and had a win f(+4)+(-2)=+(4-2)=2黄队共进2球,失4球,净胜球为 The yellw team scred 2 gals, lst 4 gals and had a win f(+2)+(-4)=-(4-2)=-2篮球共进( )球,失( )球,净胜球数为The blue team scred ( ) gals, lst ( ) gals and had a win f( ).
(+1)+(-1)=0
海平面的高度为0m.一艘潜艇从海平面先下潜40m,再上升15m.求现在这艘潜艇相对于海平面的位置.(上升为正,下潜为负)The height f the sea level is 0m. A submarine dives 40m frm the sea level and then rises 15m. Find the current psitin f the submarine relative t the sea level. (rising is psitive and diving is negative)
解:潜水艇下潜40m,记作-40m;上升 15m,记作+15m.根据题意,得(-40)+(+15)=-(40-25)=-25(m)答:现在这艘潜艇位于海平面下25m处.
1.两个有理数的和为零,则这两个有理数一定( ) A.都是零 B.至少有一个是零 C.一正一负 D.互为相反数2.在1,-1,-2这三个数中,任意两数之和的最大值是( ) A.1 B.0 C.-1 D.3
A. a+c<0 B. b+c<0 C. -b+a<0 D.-a+b+c<0
3.已知有理数a,b,c在数轴上的位置如图所示,则下列结论中错误的是( )
A.1 B.-5 C.-5或-1 D.5或1
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
(1)(-0.6)+(-2.7); (2)3.7+(-8.4); (3)3.22+1.78; (4)7+(-3.3).
答案:(1)-3.3 (2)-4.7 (3)5 (4)3.7
解:中午的气温为-25+11=-14(℃), 夜间的气温为-14+(-13)=-27(℃)
6.某城市一天早晨的气温是-25℃,中午上升了11℃,夜间又下降了13℃,那么这天中午、夜间的气温分别是多少?
取绝对值较大的加数的符号
初中数学人教版七年级上册第一章 有理数1.3 有理数的加减法1.3.1 有理数的加法习题课件ppt: 这是一份初中数学人教版七年级上册第一章 有理数1.3 有理数的加减法1.3.1 有理数的加法习题课件ppt,共24页。
人教版七年级上册1.3.1 有理数的加法习题课件ppt: 这是一份人教版七年级上册1.3.1 有理数的加法习题课件ppt,共24页。
2020-2021学年1.3.1 有理数的加法备课课件ppt: 这是一份2020-2021学年1.3.1 有理数的加法备课课件ppt,共12页。PPT课件主要包含了教学目标,教学重难点,情景引入,我是火炬手,点击此处演示,教学设计,这个数,活动4例题与练习,例1计算,-3+9等内容,欢迎下载使用。