北师大版七年级上册第四章 基本平面图形4.4 角的比较课后练习题
展开
这是一份北师大版七年级上册第四章 基本平面图形4.4 角的比较课后练习题,共17页。试卷主要包含了在同一平面上,若∠BOA=60,6°B,有如下说法,下列说法中,正确的个数有,角度计算等内容,欢迎下载使用。
4.4角的比较一.选择题。1.已知∠A=30°45',∠B=30.45°,则∠A( )∠B.(填“>”、“<”或“=”)A.> B.< C.= D.无法确定2.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6° B.40° C.80.8°或39.8° D.80.6°或40°3.有如下说法:①直线是一个平角;②如果线段AB=BC,则B是线段AC的中点;③射线AB与射线BA表示同一射线;④用一个扩大2倍的放大镜去看一个角,这个角扩大2倍;⑤两点之间,直线最短;⑥120.5°=120°30′,其中正确的有( )A.1个 B.2个 C.3个 D.4个4.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是( )A.67°64′ B.57°64′ C.67°24′ D.68°24′5.如图,OC是∠AOB的平分线,∠BOD=∠DOC,∠BOD=18°,则∠AOD的度数为( )A.72° B.80° C.90° D.108°6.下列说法中,正确的个数有( )①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③两点之间,线段最短;④若∠AOC=2∠BOC,则OB是∠AOC的平分线.A.1个 B.2个 C.3个 D.4个7.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数( )A.29° B.32° C.58° D.64°8.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是( )A.4个 B.3个 C.2个 D.1个二.填空题。9.角度计算:α=18.40°,β=6°30′,则α﹣β= .10.以∠AOB的顶点O为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=18°,则∠AOC的度数是 .11.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为 .12.若∠AOB=75°,∠AOC=27°,则∠BOC= .三.解答题。13.如图,点B在线段AC上,且AB=2BC=2.(1)尺规作图:延长线段AC到D,使CD=AC(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若点E是线段BD中点,求线段AE的长. 14.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数. 15.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示). 4.4角的比较参考答案与试题解析一.选择题。1.已知∠A=30°45',∠B=30.45°,则∠A( )∠B.(填“>”、“<”或“=”)A.> B.< C.= D.无法确定【解答】解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.2.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6° B.40° C.80.8°或39.8° D.80.6°或40°【解答】解:∠AOC=∠BOA+∠BOC=60.3°+20°30′=80.8°,∠AOC=∠BOA﹣∠BOC=60.3°﹣20°30′=39.8°,故选:C.3.有如下说法:①直线是一个平角;②如果线段AB=BC,则B是线段AC的中点;③射线AB与射线BA表示同一射线;④用一个扩大2倍的放大镜去看一个角,这个角扩大2倍;⑤两点之间,直线最短;⑥120.5°=120°30′,其中正确的有( )A.1个 B.2个 C.3个 D.4个【解答】解:①直线是一个平角,错误;②如果线段AB=BC,则B是线段AC的中点,错误;(3)射线AB与射线BA表示同一条射线,错误;(4)用一个放大2倍的放大镜去看一个角,这个角会扩大2倍,错误;(5)两点之间,直线最短,错误;(6)120.5°=120°30,′正确,故选:A.4.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是( )A.67°64′ B.57°64′ C.67°24′ D.68°24′【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.5.如图,OC是∠AOB的平分线,∠BOD=∠DOC,∠BOD=18°,则∠AOD的度数为( )A.72° B.80° C.90° D.108°【解答】解:设∠DOB=k,∵∠BOD=∠DOC,∴∠BOC=2k,∵OC是∠AOB的平分线,∴∠COA=∠BOC=2k,∴∠AOD=∠DOB+∠BOC+∠COA=5k,∵∠BOD=18°,∴∠AOD=5×18°=90°,故选:C.6.下列说法中,正确的个数有( )①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③两点之间,线段最短;④若∠AOC=2∠BOC,则OB是∠AOC的平分线.A.1个 B.2个 C.3个 D.4个【解答】解:①过两点有且只有一条直线,是直线的公理,故正确;②连接两点的线段的长度叫两点的距离,故错误;③两点之间,线段最短,是线段的性质,故正确;④若OB在∠AOC内部,∠AOC=2∠BOC,OB是∠AOC的平分线,若OB在∠AOC外部则不是,故错误.故选:B.7.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数( )A.29° B.32° C.58° D.64°【解答】解:∵根据折叠得出∠ABC=∠A′BC,∠EBD=∠E′BD,又∵∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠ABC+∠E′BD=90°,∵∠ABC=58°,∴∠E′BD=32°.故选:B.8.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是( )A.4个 B.3个 C.2个 D.1个【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB=∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.二.填空题。9.角度计算:α=18.40°,β=6°30′,则α﹣β= 11°54′ .【解答】解:α﹣β=18.40°﹣6°30′=18°24′﹣6°30′=17°84′﹣6°30′=11°54′.故答案为:11°54′.10.以∠AOB的顶点O为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=18°,则∠AOC的度数是 10°或90° .【解答】解:如图1,当射线OC在∠AOB的内部时,设∠AOC=5x,∠BOC=4x,∵∠AOB=∠AOC+∠BOC=18°,解得:∠AOC=18×=10°;如图2,当射线OC在∠AOB的外部时,设∠AOC=5x,∠BOC=4x,∵∠AOC=∠AOB+∠BOC,∠AOB=18°,∴5x=18°+4x,解得x=18°,∴∠AOC=5x=5×18°=90°.故∠AOC的度数是10°或90°.故答案为:10°或90°.11.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为 60°或15° .【解答】解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.12.若∠AOB=75°,∠AOC=27°,则∠BOC= 48°或102° .【解答】解:(1)射线OC在∠AOB的内部时,如图1所示:∵∠AOB=75°,∠AOC=27°,∠AOB=∠AOC+∠BOC,∴∠BOC=∠AOB﹣∠AOC=75°﹣27°=48°;(2)射线OC在∠AOB的外部时,如图2所示:∵∠AOB=75°,∠AOC=27°,∠BOC=∠AOB+∠AOC,∴∠BOC=75°+27°=102°,综合所述,∠BOC的度数为48°或102°,故答案为48°或102°.三、解答题。13.如图,点B在线段AC上,且AB=2BC=2.(1)尺规作图:延长线段AC到D,使CD=AC(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若点E是线段BD中点,求线段AE的长.【解答】解:(1)如图,点D为所作; (2)∵AB=2BC=2,∴BC=1,AC=AB+BC=3,∴CD=AC=3,∴BD=BC+CD=4.∵点E是线段BD的中点,∴BE=BD=2,∴AE=AB+BE=4.14.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.【解答】解:∵∠AOB=30°,∠COB=20°,∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+COD=20°+50°=70°.15.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示).【解答】解:(1)∵∠AOB=100°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=100°+60°=160°,∵OM平分∠AOC,∴∠MOC=∠MOA=∠AOC=80°,∴∠BOM=∠AOB﹣∠AOM=100°﹣80°=20°,∵ON平分∠BOC,∴∠BON=∠CON=30°,∴∠MON=∠BOM+∠BON=20°+30°=50°;(2)∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM平分∠AOC,∴∠MOC=∠MOA=∠AOC=(α+β),∴∠BOM=∠AOB﹣∠AOM=α﹣(α+β)=α﹣β,∵ON平分∠BOC,∴∠BON=∠CON=β,∴∠MON=∠BOM+∠BON=,故∠MON=;(3)∵AB=a,BC=m,∴AC=AB+BC=a+m,∵M是AC中点,∴MC=,∵N是BC中点,∴NC=,∴MN=MC﹣NC==.
相关试卷
这是一份初中数学北师大版七年级上册4.4 角的比较同步测试题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版七年级上册4.4 角的比较精品当堂检测题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版七年级上册第四章 基本平面图形4.4 角的比较练习题,共12页。试卷主要包含了角平分线是一条直线等内容,欢迎下载使用。