|学案下载
搜索
    上传资料 赚现金
    人教a版高中数学必修第一册3-2-1-2第2课时函数的最大(小)值学案
    立即下载
    加入资料篮
    人教a版高中数学必修第一册3-2-1-2第2课时函数的最大(小)值学案01
    人教a版高中数学必修第一册3-2-1-2第2课时函数的最大(小)值学案02
    人教a版高中数学必修第一册3-2-1-2第2课时函数的最大(小)值学案03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中3.2 函数的基本性质第2课时学案及答案

    展开
    这是一份高中3.2 函数的基本性质第2课时学案及答案,共15页。

    1.理解函数的最大(小)值的概念及其几何意义.
    2.会借助单调性求最值.
    3.掌握求二次函数在闭区间上的最值.
    1.最大值
    (1)定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
    ①∀x∈I,都有f(x)≤M;
    ②∃x0∈I,使得f(x0)=M.
    那么,称M是函数y=f(x)的最大值.
    (2)几何意义:函数y=f(x)的最大值是图象最高点的纵坐标.
    2.最小值
    (1)定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
    ①∀x∈I,都有f(x)≥M;
    ②∃x0∈I,使得f(x0)=M.
    那么,称M是函数y=f(x)的最小值.
    (2)几何意义:函数y=f(x)的最小值是图象最低点的纵坐标.
    温馨提示:(1)最大(小)值必须是一个函数值,是值域中的一个元素.
    (2)并不是每一个函数都有最值,如函数y=eq \f(1,x),既没有最大值,也没有最小值.
    (3)最值是函数的整体性质,即在函数的整个定义域内研究其最值.
    1.函数y=f(x)在[-2,2]上的图象如图所示,试指出此函数的最小值、最大值和相应的x的值.
    [答案] f(x)的最小值为-1,此时x=-2;
    f(x)的最大值为2,此时x=1
    2.判断正误(正确的打“√”,错误的打“×”)
    (1)任何函数都有最大值或最小值.( )
    (2)函数的最小值一定比最大值小.( )
    (3)函数f(x)=-x在[2,3)上的最大值为-2,无最小值.( )
    (4)函数最大值对应图象中的最高点,且该点只有一个.( )
    [答案] (1)× (2)× (3)√ (4)×
    题型一 图象法求函数的最大(小)值
    【典例1】 (1)已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x2,-1≤x≤1,,\f(1,x),x>1.))求f(x)的最大值、最小值;
    (2)画出函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(2,x),x∈-∞,0,,x2+2x-1,x∈[0,+∞))的图象,并写出函数的单调区间,函数的最小值.
    [思路导引] 作出函数f(x)的图象,结合图象求解.
    [解] (1)作出函数f(x)的图象(如图1).
    由图象可知,当x=±1时,f(x)取最大值为f(±1)=1;当x=0时,f(x)取最小值f(0)=0,故f(x)的最大值为1,最小值为0.
    (2)f(x)的图象如图2所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.
    图象法求最大(小)值的步骤
    [针对训练]
    1.利用图象求下列函数的最大值和最小值.
    (1)y=-eq \f(2,x),x∈[1,3];
    (2)y=|x+1|-|x-2|.
    [解] (1)作出函数图象如右图所示,该函数的图象既有最高点eq \b\lc\(\rc\)(\a\vs4\al\c1(3,-\f(2,3))),也有最低点(1,-2),所以函数y=-eq \f(2,x),x∈[1,3]有最大值-eq \f(2,3),最小值-2;
    (2)y=|x+1|-|x-2|
    =eq \b\lc\{\rc\ (\a\vs4\al\c1(3,x≥2,,2x-1,-1作出函数的图象,由右图可知,y∈[-3,3].所以函数的最大值为3,最小值为-3.
    题型二 利用单调性求函数的最大(小)值
    【典例2】 已知函数f(x)=x+eq \f(1,x).
    (1)证明:f(x)在(1,+∞)内是增函数;
    (2)求f(x)在[2,4]上的最值.
    [解] (1)证明:设∀x1,x2∈(1,+∞),且x1∵x2>x1>1,∴x1-x2<0,
    又∵x1x2>1,∴x1x2-1>0,
    故(x1-x2)·eq \f(x1x2-1,x1x2)<0,即f(x1)所以f(x)在(1,+∞)内是增函数.
    (2)由(1)可知f(x)在[2,4]上是增函数,
    ∴当x∈[2,4]时,f(2)≤f(x)≤f(4).
    又f(2)=2+eq \f(1,2)=eq \f(5,2),f(4)=4+eq \f(1,4)=eq \f(17,4),
    ∴f(x)在[2,4]上的最大值为eq \f(17,4),最小值为eq \f(5,2).
    函数的最值与单调性的关系
    (1)如果函数y=f(x)在区间(a,b]上是增函数,在区间[b,c)上是减函数,则函数y=f(x),x∈(a,c)在x=b处有最大值f(b).
    (2)如果函数y=f(x)在区间(a,b]上是减函数,在区间[b,c)上是增函数,则函数y=f(x),x∈(a,c)在x=b处有最小值f(b).
    (3)如果函数y=f(x)在区间[a,b]上是增(减)函数,则在区间[a,b]的左、右端点处分别取得最小(大)值、最大(小)值.
    [针对训练]
    2.已知函数f(x)=eq \f(x,x-1),x∈[2,5],判断函数f(x)的单调性,并求函数f(x)的最大值和最小值.
    [解] 任取2≤x1则f(x1)=eq \f(x1,x1-1),f(x2)=eq \f(x2,x2-1),
    f(x2)-f(x1)=eq \f(x2,x2-1)-eq \f(x1,x1-1)=eq \f(x1-x2,x2-1x1-1),
    ∵2≤x10,x1-1>0,
    ∴f(x2)-f(x1)<0.∴f(x2)∴f(x)=eq \f(x,x-1)在区间[2,5]上是单调减函数.
    f(x)max=f(2)=eq \f(2,2-1)=2,
    f(x)min=f(5)=eq \f(5,5-1)=eq \f(5,4).
    题型三 求二次函数的最大(小)值
    【典例3】 (1)已知函数f(x)=3x2-12x+5,x∈[0,3],求函数的最大值和最小值.
    (2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值.
    [思路导引] 找出f(x)的对称轴,分析对称轴与给定区间的关系,结合单调性求最值.
    [解] (1)函数f(x)=3x2-12x+5=3(x-2)2-7,函数f(x)=3(x-2)2-7的图象如图所示,由图可知,函数f(x)在[0,2)上递减,在[2,3]上递增,并且f(0)=5,f(2)=-7,f(3)=-4,所以在[0,3]上,f(x)max=f(0)=5,f(x)min=f(2)=-7.
    (2)∵函数图象的对称轴是x=a,
    ∴当a<2时,f(x)在[2,4]上是增函数,
    ∴f(x)min=f(2)=6-4a.
    当a>4时,f(x)在[2,4]上是减函数,
    ∴f(x)min=f(4)=18-8a.
    当2≤a≤4时,f(x)min=f(a)=2-a2.
    ∴f(x)min=eq \b\lc\{\rc\ (\a\vs4\al\c1(6-4a,a<2,,2-a2,2≤a≤4,,18-8a,a>4.))
    [变式] 本例(2)条件变为,若f(x)=x2-2ax+2,当x∈[2,4]时,f(x)≤a恒成立,求实数a的取值范围.
    [解] 在[2,4]内,f(x)≤a恒成立,
    即a≥x2-2ax+2在[2,4]内恒成立,
    即a≥f(x)max,x∈[2,4].
    又f(x)max=eq \b\lc\{\rc\ (\a\vs4\al\c1(18-8a,a≤3,,6-4a,a>3.))
    ①当a≤3时,a≥18-8a,解得a≥2,此时有2≤a≤3.
    ②当a>3时,a≥6-4a,解得a≥eq \f(6,5),此时有a>3.
    综上有实数a的取值范围是[2,+∞).
    求解二次函数最值问题的顺序
    (1)确定对称轴与抛物线的开口方向、作图.
    (2)在图象上标出定义域的位置.
    (3)观察单调性写出最值.
    [针对训练]
    3.已知函数f(x)=x2+2x+a(x∈[0,2])有最小值-2,则f(x)的最大值为( )
    A.4 B.6 C.1 D.2
    [解析] 函数f(x)=x2+2x+a的对称轴为x=-1,在[0,2]上为增函数,所以f(x)的最小值为f(0)=a=-2,f(x)的最大值为f(2)=8+a=6.
    [答案] B
    4.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.
    [解析] 如图可知f(x)在[1,a]内是单调递减的,
    又∵f(x)的单调递减区间为(-∞,3],∴1[答案] (1,3]
    题型四 实际应用中的最值
    【典例4】 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(400x-\f(1,2)x2,0≤x≤400,,80000,x>400.))
    其中x是仪器的月产量.
    (1)将利润表示为关于月产量的函数f(x);
    (2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)
    [思路导引] 先将利润表示成关于x的函数,再利用函数的单调性求最值.
    [解] (1)月产量为x台,则总成本为(20000+100x)元,
    从而f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(1,2)x2+300x-20000,0≤x≤400,,60000-100x,x>400.))
    (2)当0≤x≤400时,f(x)=-eq \f(1,2)(x-300)2+25000,
    当x=300时,f(x)max=25000;
    当x>400时,f(x)=60000-100x是减函数,f(x)<60000-100×400=20000<25000.
    ∴当x=300时,f(x)max=25000.
    即每月生产300台仪器时公司所获利润最大,最大利润为25000元.
    求解函数最大(小)值的实际问题应注意的2点
    (1)解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.
    (2)实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决.
    [针对训练]
    5.将进货单价为40元的商品按50元一个出售时,能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少?
    [解] 设售价为x元,利润为y元,单个涨价(x-50)元,销量减少10(x-50)个.
    ∴y=(x-40)(1000-10x)
    =-10(x-70)2+9000≤9000.
    故当x=70时,ymax=9000.
    答:售价为70元时,利润最大为9000元.
    课堂归纳小结
    1.求函数最大(小)值的常用方法
    (1)值域.求出函数f(x)的值域,即可求其最值(注意必须确保存在函数值里的最值);
    (2)单调性法.通过研究函数的单调性来求函数的最值;
    (3)特殊函数法.利用特殊函数[如一次函数、二次函数、反比例函数、函数y=x+eq \f(a,x)(a>0)]的单调性来求其最值.
    2.函数的值域与最大(小)值的区别
    (1)函数的值域是一个集合,函数的最值是一个函数值,它是值域的一个元素,即定义域中一定存在一个x0,使f(x0)=M(最值).
    (2)函数的值域一定存在,但函数并不一定有最大(小)值,如y=x在x∈(-1,1)时无最值.
    1.函数f(x)在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )
    A.3,0
    B.3,1
    C.3,无最小值
    D.3,-2
    [解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.
    [答案] C
    2.已知函数f(x)=|x|,x∈[-1,3],则f(x)的最大值为( )
    A.0 B.1 C.2 D.3
    [解析] 作出函数f(x)=|x|,x∈[-1,3]的图象,如图所示.根据函数图象可知,f(x)的最大值为3.
    [答案] D
    3.下列函数在[1,4]上最大值为3的是( )
    A.y=eq \f(1,x)+2 B.y=3x-2
    C.y=x2 D.y=1-x
    [解析] B、C在[1,4]上均为增函数,A、D在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.
    [答案] A
    4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________(m).
    [解析] 设矩形花园的宽为y m,
    则eq \f(x,40)=eq \f(40-y,40),
    即y=40-x,矩形花园的面积S=x(40-x)=-x2+40x=-(x-20)2+400,当x=20时,面积最大.
    [答案] 20
    5.已知二次函数y=x2-4x+5,分别求下列条件下函数的最小值:
    (1)x∈[-1,0];(2)x∈[a,a+1].
    [解] (1)∵二次函数y=x2-4x+5的对称轴为x=2且开口向上,
    ∴二次函数在x∈[-1,0]上是单调递减的.
    ∴ymin=02-4×0+5=5.
    (2)当a≥2时,函数在x∈[a,a+1]上是单调递增的,
    ymin=a2-4a+5;
    当a+1≤2即a≤1时,函数在[a,a+1]上是单调递减的,
    ymin=(a+1)2-4(a+1)+5=a2-2a+2;
    当a<2故函数的最小值为eq \b\lc\{\rc\ (\a\vs4\al\c1(a2-2a+2,a≤1,,1,1课后作业(二十)
    复习巩固
    一、选择题
    1.函数y=f(x)(-2≤x≤2)的图象如右图所示,则函数的最大值、最小值分别为( )
    A.f(2),f(-2)
    B.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))),f(-1)
    C.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))),feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))
    D.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))),f(0)
    [解析] 根据函数最值定义,结合函数图象可知,当x=-eq \f(3,2)时,有最小值feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)));当x=eq \f(1,2)时,有最大值feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))).
    [答案] C
    2.函数y=x2-2x+2在区间[-2,3]上的最大值、最小值分别是( )
    A.10,5 B.10,1
    C.5,1 D.以上都不对
    [解析] 因为y=x2-2x+2=(x-1)2+1,且x∈[-2,3],所以当x=1时,ymin=1,当x=-2时,ymax=(-2-1)2+1=10.故选B.
    [答案] B
    3.函数y=eq \f(3,x+2)(x≠-2)在区间[0,5]上的最大值、最小值分别是( )
    A.eq \f(3,7),0 B.eq \f(3,2),0
    C.eq \f(3,2),eq \f(3,7) D.最小值为-eq \f(1,4),无最大值
    [解析] 因为函数y=eq \f(3,x+2)在区间[0,5]上单调递减,所以当x=0时,ymax=eq \f(3,2),当x=5时,ymin=eq \f(3,7).故选C.
    [答案] C
    4.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )
    A.2B.-2
    C.2或-2D.0
    [解析] 由题意知a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a+1)-(2a+1)=2,解得a=-2.综上知a=±2.
    [答案] C
    5.当0≤x≤2时,a<-x2+2x恒成立,则实数a的取值范围是( )
    A.(-∞,1] B.(-∞,0]
    C.(-∞,0) D.(0,+∞)
    [解析] 令f(x)=-x2+2x,
    则f(x)=-x2+2x=-(x-1)2+1.
    又∵x∈[0,2],∴f(x)min=f(0)=f(2)=0.
    ∴a<0.
    [答案] C
    二、填空题
    6.函数y=-eq \f(1,x),x∈[-3,-1]的最大值与最小值的差是________.
    [解析] 因为函数y=-eq \f(1,x)在[-3,-1]上为增函数,所以ymin=eq \f(1,3),ymax=1,
    所以ymax-ymin=1-eq \f(1,3)=eq \f(2,3).
    [答案] eq \f(2,3)
    7.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为________.
    [解析] 函数f(x)=-x2+4x+a=-(x-2)2+4+a,x∈[0,1],且函数有最小值-2.
    故当x=0时,函数有最小值,
    当x=1时,函数有最大值.
    ∵当x=0时,f(0)=a=-2,∴f(x)=-x2+4x-2,
    ∴当x=1时,f(x)max=f(1)=-12+4×1-2=1.
    [答案] 1
    8.如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛物线路径落下,以水池的中央为坐标原点,水平方向为x轴、竖直方向为y轴建立平面直角坐标系.那么水流喷出的高度h(单位:m)与水平距离x(单位:m)之间的函数关系式为h(x)=-x2+2x+eq \f(5,4),x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(5,2))),则水流喷出的高度h的最大值是________m.
    [解析] 由函数h(x)=-x2+2x+eq \f(5,4),x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(5,2)))的图象可知,函数图象的顶点就是水流喷出的最高点.此时函数取得最大值.
    对于函数h(x)=-x2+2x+eq \f(5,4),x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(5,2))),
    若x=1,函数有最大值h(x)max=-12+2×1+eq \f(5,4)=eq \f(9,4)(m).
    于是水流喷出的最高高度是eq \f(9,4)m.
    [答案] eq \f(9,4)
    三、解答题
    9.已知函数f(x)=eq \f(3,2x-1).
    (1)证明:函数f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),+∞))上是减函数;
    (2)求函数f(x)在[1,5]上的最大值和最小值.
    [解] (1)证明:设x1、x2是区间eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),+∞))上的任意两个实数,且x2>x1>eq \f(1,2),
    则f(x1)-f(x2)=eq \f(3,2x1-1)-eq \f(3,2x2-1)
    =eq \f(6x2-x1,2x1-12x2-1).
    由于x2>x1>eq \f(1,2),
    所以x2-x1>0,且(2x1-1)·(2x2-1)>0,
    所以f(x1)-f(x2)>0,即f(x1)>f(x2),
    所以函数f(x)=eq \f(3,2x-1)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),+∞))上是减函数.
    (2)由(1)知,函数f(x)在[1,5]上是减函数,
    因此,函数f(x)=eq \f(3,2x-1)在区间[1,5]的两个端点上分别取得最大值与最小值,即最大值为f(1)=3,最小值为f(5)=eq \f(1,3).
    10.求函数f(x)=x2-2ax+2在[-1,1]上的最小值.
    [解] 函数f(x)图象的对称轴为直线x=a,且函数图象开口向上,如图所示:
    ①当a>1时,f(x)在[-1,1]上单调递减,
    故f(x)min=f(1)=3-2a;
    ②当-1≤a≤1时,f(x)在[-1,1]上先减后增,
    故f(x)min=f(a)=2-a2;
    ③当a<-1时,f(x)在[-1,1]上单调递增,
    故f(x)min=f(-1)=3+2a.
    综上可知f(x)的最小值为
    f(x)min=eq \b\lc\{\rc\ (\a\vs4\al\c1(3-2a,a>1,,2-a2,-1≤a≤1,,3+2a,a<-1.))
    综合运用
    11.函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+6,x∈[1,2],,x+7,x∈[-1,1],))则f(x)的最大值与最小值分别为( )
    A.10,6 B.10,8
    C.8,6 D.以上都不对
    [解析] ∵x∈[1,2]时,f(x)max=2×2+6=10,f(x)min=2×1+6=8;x∈[-1,1]时,f(x)max=1+7=8,f(x)min=-1+7=6,∴f(x)max=10,f(x)min=6.
    [答案] A
    12.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是( )
    A.[1,+∞) B.[0,2]
    C.(-∞,2] D.[1,2]
    [解析] f(x)=(x-1)2+2,∵f(x)min=2,f(x)max=3,且f(1)=2,f(0)=f(2)=3,∴1≤m≤2,故选D.
    [答案] D
    13.某公司在甲、乙两地同时销售一种品牌车,销售x辆该品牌车的利润(单位:万元)分别为L1=-x2+21x和L2=2x.若该公司在两地共销售15辆,则能获得的最大利润为( )
    A.90万元B.60万元
    C.120万元D.120.25万元
    [解析] 设公司在甲地销售x辆,则在乙地销售(15-x)辆,公司获利为L=-x2+21x+2(15-x)
    =-x2+19x+30=-eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(19,2)))2+30+eq \f(192,4),
    ∴当x=9或10时,L最大为120万元.
    [答案] C
    14.函数y=|x+1|+|x-2|的最小值为________.
    [解析] 化简函数为
    y=eq \b\lc\{\rc\ (\a\vs4\al\c1(-2x+1,x≤-1,,3,-12,))
    其图象如图所示,
    所以函数的最小值为3.
    [答案] 3
    15.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-eq \f(2,3).
    (1)求证:f(x)是R上的单调减函数.
    (2)求f(x)在[-3,3]上的最小值.
    [解] (1)证明:设x1,x2是任意的两个实数,且x1则x2-x1>0,因为x>0时,f(x)<0,
    所以f(x2-x1)<0,
    又因为x2=(x2-x1)+x1,
    所以f(x2)=f[(x2-x1)+x1]
    =f(x2-x1)+f(x1),
    所以f(x2)-f(x1)=f(x2-x1)<0,
    所以f(x2)所以f(x)是R上的单调减函数.
    (2)由(1)可知f(x)在R上是减函数,
    所以f(x)在[-3,3]上也是减函数,
    所以f(x)在[-3,3]上的最小值为f(3).
    而f(3)=f(1)+f(2)=3f(1)=3×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2,3)))=-2.
    所以函数f(x)在[-3,3]上的最小值是-2.
    相关学案

    数学人教A版 (2019)3.2 函数的基本性质学案: 这是一份数学人教A版 (2019)3.2 函数的基本性质学案,共5页。学案主要包含了探究新知,形成概念,巩固提升,课堂小结,课堂检测等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第三章 函数概念与性质3.2 函数的基本性质学案: 这是一份高中数学人教A版 (2019)必修 第一册第三章 函数概念与性质3.2 函数的基本性质学案,共8页。

    高中3.2 函数的基本性质学案: 这是一份高中3.2 函数的基本性质学案,共9页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教a版高中数学必修第一册3-2-1-2第2课时函数的最大(小)值学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map