初中数学人教版九年级上册22.2二次函数与一元二次方程优秀同步训练题
展开人教版 九年级上册 第222章 二次函数与一元一次方程
能力提升测试卷(二) 满分120
一、选择题(30分)
1、二次函数y=﹣x2+2x+1与坐标轴交点情况是( )
A.一个交点 B.两个交点 C.三个交点 D.无交点
.
2、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x的范围是( )
x | 0 | 0.5 | 1 | 1.5 | 2 |
y=ax2+bx+c | ﹣1 | ﹣0.5 | 1 | 3.5 | 7 |
A.0<x<0.5 B.0.5<x<1 C.1<x<1.5 D.1.5<x<2
.
3、抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣2,0),对称轴为直线x=2,其部分图象如图所示,当y>0时,x的取值范围是( )
A.x>﹣2 B.x<6 C.﹣2<x<6 D.x<﹣2或x>6
4、已知二次函数y=x2+6x+c的图象与x轴的一个交点为(﹣1,0),则它与x轴的另一个交点的坐标是( )
A.(﹣3,0) B.(3,0) C.(﹣5,0) D.(5,0)
.
5、在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )
A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2
C.M=N或M=N+1 D.M=N或M=N﹣1
6、已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.无实数根 D.无法确定
7、已知坐标平面上有二次函数y=﹣(x+6)2+5的图形,函数图形与x轴相交于(a,0)、(b,0)两点,其中a<b.今将此函数图形往上平移,平移后函数图形与x轴相交于(c,0)、(d,0)两点,其中c<d,判断下列叙述何者正确?( )
A.(a+b)=(c+d),(b﹣a)<(d﹣c)
B.(a+b)=(c+d),(b﹣a)>(d﹣c)
C.(a+b)<(c+d),(b﹣a)<(d﹣c)
D.(a+b)<(c+d),(b﹣a)>(d﹣c)
8、已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是( )
A.a≥ B.a> C.0<a< D.0<a≤
9、如图所示是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+c>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n+1没有实数根.其中正确的结论个数是( )
A.1个 B.2个 C.3个 D.4个
10、二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y=ax2+bx+c | … | t | m | ﹣2 | ﹣2 | n | … |
且当x=﹣时,与其对应的函数值y>0,有下列结论:
①abc<0;②图象的顶点在第三象限;③m=n;④﹣2和3是关于x的方程ax2+bx+c=t的两个根;⑤a<.其中,正确结论的个数是( )
A.1 B.2 C.3 D.4
二、填空题(24分)
11、已知抛物线y=x2﹣x﹣1与x轴的一个交点的坐标为(m,0),则代数式m2﹣m+2021的值为 .
12、在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k= .
13、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,下列结论:
①ac<0; ②4a﹣2b+c>0; ③当x>2时,y随x的增大而增大;
④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.
其中正确的结论有 .
14、如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为公共对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为 .
15、如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .
16、已知抛物线y=ax2+bx+c的图象与x轴分别交于点A(﹣2,0),B(﹣4,0),则关于x的方程ax2+bx+c=0的根为 .
三、解答题(66分)
17、(6分)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;
(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
18、(8分)二次函数y=x2+bx的对称轴为直线x=﹣1.
(1)求二次函数y=x2+bx的解析式;
(2)若关于x的一元二次方程x2+bx+t=0(t为实数)在﹣4<x<3的范围内有解,则t的取值范围
.
19、(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:无论k为何实数,方程总有两个不相等的实数根;
(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.
20、(10分)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.
(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.
(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.
21、(10分)已知抛物线y=x2+2ax+3a与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,且m+n=1,求k的值.
22、(12分)如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.
(1)求该抛物线所对应的函数解析式;
(2)设四边形CABP的面积为S,求S的最大值.
23、(12分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.
(1)求抛物线的解析式;
(2)若n<﹣5,试比较y1与y2的大小;
(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.
浙教版九年级上册1.4 二次函数的应用精品课后作业题: 这是一份浙教版九年级上册1.4 二次函数的应用精品课后作业题,文件包含答案docx、原卷docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
初中数学人教版九年级上册22.2二次函数与一元二次方程精品课后测评: 这是一份初中数学人教版九年级上册22.2二次函数与一元二次方程精品课后测评,文件包含答案docx、原卷docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
2021学年第二十四章 圆综合与测试精品课后复习题: 这是一份2021学年第二十四章 圆综合与测试精品课后复习题,文件包含答案解析docx、原卷docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。