苏科版七年级上册3.1 字母表示数一课一练
展开
这是一份苏科版七年级上册3.1 字母表示数一课一练,共4页。试卷主要包含了1字母表示数,8=1等内容,欢迎下载使用。
选择题:
1.买单价为 a元的温度计 n个,付出 b元,应找回的钱数是( )
A.(b-a)元 B.(b-n)元 C.(n a-b)元 D.(b-n a)元
2.已知 2n-1 表示“任意正奇数”,那么表示不大于零的偶数的是( )
A.-2n B.2(n-1) C.-2(n + 1) D.-2(n-1)
3.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第 2组取 5粒,第 3组取 7粒……即每组所取种子数目比该组前一组增加 2粒,按此规律,那么请你推测第 n 组应该有种子( )
A.(2n + 1)粒 B.(2n-1)粒 C.2n 粒 D.(n + 2)粒
4.小明的爸爸每月工资a元,从今年起每月工资增长了原来的15%,则现在每月工资是( )元.
A.15%a B.85%a C.115%a D.15%+a
5.一个长方形的周长是20厘米,长是a厘米,则宽是( ).
A.(20-a)厘米 B.(20-2a)厘米 C.10-a厘米 D.(10-a)厘米
6.有一个两位数,它的十位数字是a,个位数字是b,则这个两位数的大小是( ).
A.a+b B.a×b C.10a+b D.10(a+b)
7.教室内有m排座位,每排有n个座位,则这个教室共有( )个座位.
A.M n B.(m+n) C.(m n) D.2m+2n
8.如下图,搭x个正方形所需要的火柴棒数目,下列答案中不正确的是( ).
A.3x+1 B.4+3(x-1) C.4x-3 D.x+x+(x+1)
二、填空题:
1.每本练习本 8 元,甲买了 a 本,乙买了 b 本,两人一共花了 元.
2.小李用 x 元钱买 6 千克苹果,则苹果的单价是 元;如果玉米的单价是 y 元/千克, 那么 10 元可以买 千克玉米.
3.某船在静水中的速度为 x 千米/小时,水流速度为 y 千米/小时,该船逆水行了 a 小时, 共行 千米,这段路程顺水行需 小时.
4.如图,是用火柴棒拼成的图形,则第 n 个图形需 根火柴棒.
5.将甲,乙两种糖果混合后出售,已知甲种糖果每千克 m 元,取 a 千克;乙种糖果每千克 n 元,取 b 千克,则混合后每千克糖果的售价应是 元.
6.用字母表示乘法分配律是________.
7.正方形的周长是a厘米,则面积是_____平方厘米.
8.设n为整数,则所有偶数可表示为______,所有奇数可表示为______,能被5整除的数可表示为________,能被3除余1的数可表示为_______.
9.a的30%与b的70%的差可表示为______.
10.如图所示,阴影部分的面积可表示为________.
11.圆柱的底面半径为r,高为h,则圆柱的表面积是______.(提示:圆柱的侧面积=底面周长×圆柱的高)
三、解答题:
1.用字母表示分数的基本性质:把一个分数的分子和分母都乘(或除以)不等于零的同一个数,分数的值不变.
2.一个长方体的长为a,宽为b,高是宽的平方,求这个长方体的体积.
3.研究下列算式:
1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
……
(1)按照这样的规律写出第5行及第6行的算式.
(2)用代数式表示此规律.
4.某超市一种大米售价为每斤2元钱,如果买50斤以上,超过50斤的部分售价为每斤1.
8元,小李买这种大米a斤.小李应付款多少元? (用字母乜表示)
5.观察下列几个等式:
1+2+1=22=4
1+2+3+2+1=32=9
1+2+3+4+3+2+1=42=16
聪明的你一定能找出其中的规律,请利用其规律填空,
1+2+3+…+99+100+99+…+3+2+1= =
由此,我们又可利用上式得到求若干个连续自然数和的方法,思考后请运用知识解决
问题
(1) 求 1+2+3+…+99+100 的值;
(2) 由此可得:1+2+3+…+n=
参考答案
一、选择题:
1、D 2、D 3、A 4.C 5.D 6.C 7.A 8.C
二、填空题:
1、(8a+8b)元 2、 3、a(x-y) 4、(2n+1) 5、
6.a(b+c)=ab+ac 7.()2或 8.2n 2n+1(或2n-1) 5n 3n+1(或3n-2)
9.30%a-70%b 10.a2 11.r h+2r2
三、解答题:
1.解:用a表示分子,用b表示分母,m表示一个不等于0的数,
则分数基本性质可表示为:=.点拨:用字母可以表示数.
2.解:这个长方体的高是b2.
∴长方体的体积=长×宽×高=a×b×b2=ab3.
3.(1)解:第5行的算式是:1+3+5+7+9=25=52. 第6行的算式是:1+3+5+7+9+11=36=62.
(2)解:这个算式的第n行可表示为:1+3+5+…+(2n-1)=n2.
4、(1)40 (2)4n (3)2n(n+1)
5、当0<a ≤ 50,应付款2a元;当a>50时,2×50+1.8(a-50)=1.8a+10
6、 10000 (1)5050 (2)
相关试卷
这是一份初中3.1 勾股定理课时训练,共6页。
这是一份2021学年3.1 平均数达标测试,共8页。试卷主要包含了1 平均数,58,0,6元B.16,78,等内容,欢迎下载使用。
这是一份2020-2021学年3.1 勾股定理测试题,共6页。试卷主要包含了1勾股定理,8C.9等内容,欢迎下载使用。