终身会员
搜索
    上传资料 赚现金

    人教版八年级数学下册【教案】矩形的判定

    立即下载
    加入资料篮
    人教版八年级数学下册【教案】矩形的判定第1页
    人教版八年级数学下册【教案】矩形的判定第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版18.2.2 菱形教学设计

    展开

    这是一份初中人教版18.2.2 菱形教学设计,共4页。教案主要包含了例题的意图分析,课堂引入,例习题分析,随堂练习,课后练习等内容,欢迎下载使用。
                              矩形的判定教学目标  1.理解并把握矩形的判定方法.  2.使同学能应用矩形定义、判定等学问,解决简洁的证明题和计算题,进一步培育同学的分析力量。重点、难点:1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.3.难点的突破方法:    矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形时,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用定义判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).而其它判定都是以定义为基础推导出来的.因此本节课要从复习矩形定义下手,并指出由平行四边形得到矩形只需要添加一个独立条件,然后让同学思考争辩,假如小华做出的是一个平行四边形,再加一个什么条件可以说明它是一个矩形呢?从而导出矩形判定方法.    对于判定方法1,要着重说明这共性质包括两个条件:(1)是平行四边形;(2)两条对角线相等.对于判定2,只要求是四边形即可,由于有三个角是直角,可以推出四边形是平行四边形,而由对角线相等却推不出四边形是平行四边形.为了加深印象,我们支配了例1,在教学中可以适当地再增加一些推断的题目.      要让同学知道(1)矩形的判定方法有以下三种:一个角是直角的平行四边形;对角线相等的平行四边形;有三个角是直角的四边形.(2)而由矩形和平行四边形及四边形的从属关系将矩形的判定方法又可分为两类:从四边形动身必需增加三个特定的独立条件;从平行四边形动身只需再增加一个特定的独立条件.(3)特殊地:假如所给四边形添加的条件不满足三个的确定不是矩形;所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.  在教学中,除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的有用价值.三、例的意图分析    本节课的三个例题都是补充题,例1的一组推断题是为了让同学加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些推断的目;例2是利用矩形学问进行计算;例3是一道矩形的判定题,三个题目从不同的角度动身,来综合应用矩形定义及判定等学问的. 四、课堂引入  1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么方法可以检测他做的是矩形像框吗?看看谁的方法可行?通过争辩得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.由于由四边形内角和可知,这时第四个角肯定是直角.)五、例习题分析    例1(补充)下列各句判定矩形的说法是否正确?为什么?    (1)有一个角是直角的四边形是矩形;                 ×    (2)有四个角是直角的四边形是矩形;                     (3)四个角都相等的四边形是矩形;                        (4)对角线相等的四边形是矩形;                     ×     (5)对角线相等且相互垂直的四边形是矩形;           ×(6)对角线相互平分且相等的四边形是矩形;           (7)对角线相等,且有一个角是直角的四边形是矩形;   ×(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(    (9)两组对边分别平行,且对角线相等的四边形是矩形.   () 指出:    (l)所给四边形添加的条件不满足三个的确定不是矩形;    (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2 (补充)已知平行四边形ABCD的对角线AC、BD相交于点O,AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先依据AOB是等边三角形及平行四边形对角线相互平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:  四边形ABCD是平行四边形,   AO=AC,BO=BD  AO=BO,  AC=BD.  ABCD是矩形(对角线相等的平行四边形是矩形).在RtABC中,  AB=4cm,AC=2AO=8cm,   BC=(cm).      例3 (补充)  已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此目可分解出基本图形,如图(2),因此,可选三个角是直角的四边形是矩形来证明.证明:  四边形ABCD是平行四边形,  ADBC. DAB+ABC=180°   AE平分DAB,BG平分ABC , EAB+ABG=×180°=90° AFB=90°同理可证  AED=BGC=CHD=90°  四边形EFGH是平行四边形(有三个角是直角的四边形是矩形). 六、随堂练习1.(选择)下列说法正确的是(    ).(A)有一组对角是直角的四边形肯定是矩形(B)有一组邻角是直角的四边形肯定是矩形(C)对角线相互平分的四边形是矩形      (D)对角互补的平行四边形是矩形2.已知:如图 ,在ABC中,C=90° CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形. 七、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行: 先截出两对符合规格的铝合金窗料(如图),使AB=CD,EF=GH; 摆放成如图的四边形,则这时窗框的外形是     形,依据的数学道理是:          将直角尺靠紧窗框的一个角(如图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图),说明窗框合格,这时窗框是    形,依据的数学道理是:      
     2.在RtABC中,C=90°,AB=2AC,求A、B的度数.   

    相关教案

    数学人教版18.2.1 矩形教案:

    这是一份数学人教版18.2.1 矩形教案,共3页。教案主要包含了教材分析,例题的意图分析,课堂引入,例习题分析,课堂随练,课堂小结,作业布置,教学反思等内容,欢迎下载使用。

    初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学设计:

    这是一份初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学设计,共4页。教案主要包含了知识回顾,创设情景,探究新知,巩固练习,课堂小结,作业    教材习题的第1等内容,欢迎下载使用。

    数学人教版18.2.1 矩形第2课时教案设计:

    这是一份数学人教版18.2.1 矩形第2课时教案设计,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map