初中数学人教版八年级上册11.2.2 三角形的外角教案
展开11.2.2 三角形的外角
【教学目标】
1、知识与技能: 使学生初步掌握三角形内角和定理的两个推论,并会应用.。
2、过程与方法:培养学生总结知识内容,使之条理化,以便加深理解和记忆,养成良好的学习习惯.
3、情感态度与价值观:
⑴培养学生的推理能力,运用几何语言有条理的表达能力。
⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【重点】三角形内角和定理推论的应用.
【难点】三角形外角的概念.真正理解推论,并能灵活运用.
【课型】 新授课
【学习方法】自学与小组合作学习相结合的方法
【学习过程】
一、目标导入
〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?
(是∠A、∠B、∠C,它们的和是1800。)
若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?
二、自主学习(1):
1.自学内容:教材第15页“思考”上.
2.自学要求:学生理解三角形外角的概念。
三、交流展示(1):
1:三角形外角的定义:________________________________
2:外角的特征有三:(1)顶点在___________上.(2)一条边是______________.(3)另一条边是__________________.
3、画出一个三角形,并画出它的所有外角。
4、下列图中,∠1、∠2、∠3哪些是△ABC的外角?
四、自主学习(2):
1.自学内容:课本15页思考到15页第3行;
2.自学要求:学生理解三角形内角和定理推论
五、交流展示(2)
容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?
〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、∠B的关系吗?
∵CE∥AB, ∴∠A=∠1,∠B=∠2
又∠ACD=∠1+∠2
∴∠ACD=∠A+∠B
你能用文字语言叙述这个结论吗?
三角形的一个外角等于与它不相邻的两个内角之和。
由加数与和的关系你还能知道什么?
三角形的一个外角大于与它不相邻的任何一个内角。
即 ,。
六、自主学习(3):
1.自学内容:课本15页例题;
2.自学要求:学生能灵活运用三角形内角和定理推论
例 如图,∠1、∠2、∠3是三角形ABC的三个外角,它们的和是多少?
分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC、ABC、∠ACB有什么关系?
解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,
∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400
又∠BAC+∠ABC+∠ACB=1800
∴∠1+∠2+∠3==3600。
你能用语言叙述本例的结论吗?
三角形外角的和等于3600。
七、交流展示(3)
1、课本15页练习
2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,∠A=62°,∠ACD=35°,∠ABE=20°
求:(1)∠BDC度数.(2)∠BFD度数.
八、巩固练习:
1. 一个三角形的两内角分别55°和65°,它的外角不可能是( )
A. 115° B. 120° C. 125° D. 130°
2. 已知三角形的一个外角小于与它相邻的内角,那么这个三角形是( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 以上三种情况都有可能
3. 已知,如图,在△ABC中,D是三角形内一点,
求证:∠BDC>∠BAC。
九、小结
1、什么是三角形外角?
2、三角形的外角有哪些性质?
(1. 三角形的外角与它相邻的内角互补。
2. 三角形的一个外角等于和它不相邻的两个内角的和。
3. 三角形的一个外角大于任何一个和它不相邻的内角。
4. 三角形的外角和等于360°。
找三角形的外角是难点,特别是当一个角是某个三角形的内角,同时又是另一个三角形的外角时,困难就更大,解决这个难点的方法是讲清定义,图形分析,变换位置,思路清晰.)
十、布置作业:课本16页2、5、6、8、10。
人教版八年级上册11.2.2 三角形的外角教案设计: 这是一份人教版八年级上册11.2.2 三角形的外角教案设计,共14页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
初中数学人教版八年级上册11.2.2 三角形的外角教学设计: 这是一份初中数学人教版八年级上册11.2.2 三角形的外角教学设计,共3页。教案主要包含了教学目标,教学准备,教学过设计等内容,欢迎下载使用。
初中数学人教版八年级上册11.2.2 三角形的外角精品教学设计及反思: 这是一份初中数学人教版八年级上册11.2.2 三角形的外角精品教学设计及反思