|试卷下载
搜索
    上传资料 赚现金
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数同步测试试卷(精选含详解)
    立即下载
    加入资料篮
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数同步测试试卷(精选含详解)01
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数同步测试试卷(精选含详解)02
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数同步测试试卷(精选含详解)03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试课时作业

    展开
    这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共28页。试卷主要包含了若直线y=kx+b经过一等内容,欢迎下载使用。

    八年级数学下册第二十一章一次函数同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )

    A.x>-3 B.x>-2 C.x>1 D.x>2
    2、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )
    A. B. C. D.
    3、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    1
    2
    3
    4
    5


    x

    ﹣2
    ﹣1
    0
    1
    2

    y2

    5
    2
    ﹣1
    ﹣4
    ﹣7

    则关于x的不等式kx+b>mx+n的解集是(  )
    A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
    4、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )
    A.(2,2) B.(2,3) C.(2,4) D.(2,5)
    5、如图1,在中,,点是的中点,动点从点出发沿运动到点,设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( ).

    A.10 B.12 C. D.
    6、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
    A. B. C. D.
    7、若点,都在一次函数的图象上,则与的大小关系是( )
    A. B. C. D.
    8、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是(  )

    ①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
    A.1 B.2 C.3 D.4
    9、下列函数中,y是x的一次函数的是(  )
    A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
    10、已知点A的坐标为,点A关于x轴的对称点落在一次函数的图象上,则a的值可以是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知,,在x轴找一点P,使的值最小,则点P的坐标为_______.
    2、已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−x+b上,则y1,y2,y3的值的大小关系是______.
    3、一次函数y=kx+b(k≠0)的图象是_______.
    4、如图,一次函数的图像与轴交于点,与正比例函数的图像交于点,点的横坐标为1.5,则满足的的范围是______.

    5、已知一次函数的图象(如图),则不等式 <0的解集是___________

    三、解答题(5小题,每小题10分,共计50分)
    1、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:

    A种产品
    B种产品
    成本价(元/件)
    400
    300
    销售价(元/件)
    560
    450
    (1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
    (2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
    2、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).

    (1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
    (2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
    (3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
    3、已知y与成正比例,且当时,;
    (1)求出y与x之间的函数关系式;
    (2)当时,求y的值;
    (3)当时,求x的取值范围.
    4、已知y与x﹣2成正比例,且当x=1时,y=﹣2

    (1)求变量y与x的函数关系式;
    (2)请在给出的平面直角坐标系中画出此函数的图象;
    (3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集   .
    5、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.
    (1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;
    (2)求皮球第几次落地后的反弹高度为m.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    先将(-1,0)代入y=kx+b中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.
    【详解】
    解:将(-1,0)代入y=kx+b中得:-k+b=0,解得:k=b,
    则不等式化为,
    ∵k>0,
    ∴(x-2)+1>0,
    解得:x>1,
    故选:C.
    【点睛】
    本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k与b的关系是解答的关键.
    2、C
    【解析】
    【分析】
    因为AB的长度是确定的,故△CAB的周长最小就是CA+CB的值最小,作点A关于x轴的对称点A′,连接A′B交x轴于点C,求出C点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点C,此时,AC+BC=A′C+BC=AC,长度最小,
    ∵A(-1,2),
    ∴A′(-1,﹣2),
    设直线A′B的解析式为y=kx+b(k≠0),把A′(-1,﹣2),代入得,
    ∴,解得,
    ∴直线A′B的解析式为y=-2x﹣4,
    当y=0时,x=-2,
    ∴C(-2,0).
    故选:C

    【点睛】
    本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C的位置,利用一次函数解析式求坐标.
    3、D
    【解析】
    【分析】
    根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
    【详解】
    解:根据表可得y1=kx+b中y随x的增大而增大;
    y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
    则当x>﹣1时,kx+b>mx+n.
    故选:D.
    【点睛】
    本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
    4、C
    【解析】
    【分析】
    由函数“上加下减”的原则解题.
    【详解】
    解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,
    当x=2时,y=2+2=4,
    所以在平移后的函数图象上的是(2,4),
    故选:C.
    【点睛】
    本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.
    5、D
    【解析】
    【分析】
    由图像可知, 当时,y与x的函关系为:y=x,当x=8时,y=8,即P与A重合时,的面积为8,据此求出CD,BC,再根据勾股定理求出AB即可P.
    【详解】
    解:如图2,当时,设y=kx,
    将(3,3)代入得,k=1,

    当P与A重合时,即:PC=AC=8,由图像可知,把x=8代入y=x,y=8,
    ,

    ,
    是BC的中点,

    在Rt中,

    故选:D.
    【点睛】
    本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.
    6、B
    【解析】
    【分析】
    根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
    【详解】
    解:∵直线y=kx+b经过一、二、四象限,
    ∴k<0,b>0,
    ∴﹣k>0,
    ∴直线y=bx﹣k过一、二、三象限,
    ∴选项B中图象符合题意.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    7、A
    【解析】
    【分析】
    根据k>0时,y随x的增大而增大,进行判断即可.
    【详解】
    解:∵点,都在一次函数的图象上,
    ∴y随x的增大而增大


    故选A
    【点睛】
    本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
    “当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
    8、C
    【解析】
    【分析】
    仔细观察图象:①观察函数图象可以直接得到答案;
    ②观察函数图象可以直接得到答案;
    ③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;
    ④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.
    【详解】
    解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;
    函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,
    一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;
    ∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,
    ∴4a+b=4c+d
    ∴d-b=4(a-c),故④正确.
    综上所述,正确的结论有3个.
    故选:C.
    【点睛】
    本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.
    9、B
    【解析】
    【分析】
    利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
    【详解】
    解:∵y=不符合一次函数的形式,故不是一次函数,
    ∴选项A不符合题意;
    ∵形如y=kx+b(k,b为常数).
    ∴y=﹣3x+1中,y是x的一次函数.
    故选项B符合题意;
    ∵y=2是常数函数,
    ∴选项C不符合题意;
    ∵y=x2+1不符合一次函数的形式,故不是一次函数,
    ∴选项D不符合题意;
    综上,y是x的一次函数的是选项B.
    故选:B.
    【点睛】
    本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    10、C
    【解析】
    【分析】
    由点和点关于轴对称,可求出点的坐标,再利用一次函数图象上点的坐标特征可得出关于的方程,解之即可得出结论.
    【详解】
    解:点和点关于轴对称,
    点的坐标为.
    又点在直线上,


    故选:C.
    【点睛】
    本题考查了一次函数图象上点的坐标特征以及关于轴、轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式.
    二、填空题
    1、
    【解析】
    【分析】
    根据题意求出A点关于y轴的对称点,连接,交x轴于点P,则P即为所求点,用待定系数法求出过两点的直线解析式,求出此解析式与x轴的交点坐标即可.
    【详解】
    解:作点A关于y轴的对称点,连接,

    设过的直线解析式为,把,,

    解得:,,
    故此直线的解析式为:,
    当时,,
    即点P的坐标为.
    故答案为:.
    【点睛】
    本题考查的是最短线路问题及用待定系数法求一次函数的解析式,熟知轴对称的性质及一次函数的相关知识是解答此题的关键.
    2、
    【解析】
    【分析】
    先根据直线y=-x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
    【详解】
    解:∵直线y=-x+b,k=-<0,
    ∴y随x的增大而减小,
    又∵-2<-1<1,
    ∴y1>y2>y3.
    故答案为:y1>y2>y3.
    【点睛】
    本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
    3、一条直线
    【解析】

    4、##1.5>x>-3
    【解析】
    【分析】
    根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为.
    【详解】
    ∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,

    解得m=k-2
    联立y=mx和y=kx+6得

    解得x=-3

    即函数y=mx和y=kx+6交点P’的横坐标为-3,
    观察函数图像得,
    满足kx−3
    故答案为:
    【点睛】
    本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx−3 5、x<1
    【解析】
    【分析】
    根据一次函数与一元一次不等式的关系即可求出答案.
    【详解】
    解:∵y=kx+b,kx+b<0,
    ∴y<0,
    由图象可知:x<1,
    故答案为:x<1.
    【点睛】
    本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.
    三、解答题
    1、 (1)A种产品生产400件,B种产品生产200件
    (2)A种产品生产1000件时,利润最大为460000元
    【解析】
    【分析】
    (1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
    (2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
    (1)
    解:设A种产品生产x件,则B种产品生产(600-x)件,
    由题意得:,
    解得:x=400,
    600-x=200,
    答:A种产品生产400件,B种产品生产200件.
    (2)
    解:设A种产品生产x件,总利润为w元,由题意得:

    由,
    得:,
    因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
    【点睛】
    本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    2、 (1)点E,点F;
    (2)()或();
    (3)b的取值范围1<b<2或2<b<3.
    【解析】
    【分析】
    (1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
    (2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
    (3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
    (1)
    解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
    以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
    ∴△ABE为直角三角形,且AE大于AB;

    以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,

    ∴点E与点F是AB关联点,
    点G不在A、B两点垂直的直线上,故不能构成直角三角形,
    故答案为点E,点F;
    (2)
    解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
    ∴△AOB为等腰直角三角形,AB=
    ∴∠ABO=∠BAO=45°,
    以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
    ∴∠OAS=90°-∠BAO=45°,
    ∴△AOS为等腰直角三角形,
    ∴OS=OA=1,点S(1,0),
    设AS解析式为代入坐标得:

    解得,
    AS解析式为,
    ∴,
    解得,
    点P(),
    AP=,AP>AB
    以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
    ∴∠OBR=90°-∠ABO=45°,
    ∴△OBR为等腰直角三角形,
    ∴OR=OB=1,点R(0,-1),
    过点R与AS平行的直线为AS直线向下平移2个单位,
    则BR解析式为,
    ∴,
    解得,
    点P1(),
    AP1=>,
    ∴点P为线段AB的关联点,点P的坐标为()或();

    (3)
    解:过点A与AB垂直的直线交直线y=2x+2于U,
    把△AOB绕点A顺时针旋转90°,得△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(-1,b-1)在直线上,

    ∴,
    ∴当b>1时存在两个“关联点”,
    当b<1时,UA<AB,不满足定义,没有两个“关联点”

    当过点A的直线与直线平行时没有 “关联点”
    与x轴交点X(-1,0),与y轴交点W(0,2)
    ∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
    ∴△OXW顺时针旋转90°,得到△OAB,
    ∴OB=OW=2,
    ∴在1<b<2时,直线上存在两个AB的“关联点”,

    当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(1,1+b)在直线上,

    ∴解得
    ∴当2<b<3时, 直线上存在两个AB的“关联点”,
    当b>3时,UA<AB,不满足定义,没有两个“关联点”

    综合得,b的取值范围1<b<2或2<b<3.
    【点睛】
    本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
    3、 (1)
    (2)
    (3)
    【解析】
    【分析】
    (1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;
    (2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;
    (3)通过解不等式2x+4<−2即可.
    (1)
    解:设y=k(x+2)(k≠0),
    当x=1,y=6得k(1+2)=6,
    解得k=2,
    所以y与x之间的函数关系式为y=2x+4;
    (2)
    x=−3 时,y=2×(−3)+4=−2;
    (3)
    y<−2 时,2x+4<−2,
    解得.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    4、 (1)y=2x﹣4
    (2)见解析
    (3)x<3
    【解析】
    【分析】
    (1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;
    (2)列表描点连线即可;
    (3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.
    (1)
    解:∵y与x﹣2成正比例,
    ∴设y=k(x﹣2)(k为常数,k≠0),
    把x=1,y=﹣2代入得:﹣2=k(1﹣2),
    解得:k=2,
    即y=k(x﹣2)=2(x﹣2)=2x﹣4,
    所以变量y与x的函数关系式是y=2x﹣4;
    (2)
    列表
    x
    0
    2
    y
    -4
    0
    描点(0,-4),(2,0),
    连线得y=2x﹣4的图象;

    (3)
    从图象可知:A点的坐标是(3,2),把A点的横坐标x=3代入y=2x﹣4时,y=2,
    即点A也在函数y=2x﹣4的图象上,
    即点A是函数y=ax+b和函数y=2x﹣4的交点,
    ∴关于x的不等式ax+b>2x﹣4反应在函数图像函数y=ax+b在函数y=2x﹣4图像上方,交点A的左侧,
    所以关于x的不等式ax+b>2x﹣4的解集是x<3,
    故答案为:x<3.
    【点睛】
    本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.
    5、 (1)h(n为正整数);
    (2)皮球第7次落地后的反弹高度为m.
    【解析】
    【分析】
    (1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;
    (2)把h代入(1)中解析式即可解题.
    (1)
    解:根据题意得,
    表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h(n为正整数);
    (2)
    把h代入h,
    得,
    2n=16×8=27,
    n=7
    故皮球第7次落地后的反弹高度为m.
    【点睛】
    本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.

    相关试卷

    2020-2021学年第二十一章 一次函数综合与测试课后作业题: 这是一份2020-2021学年第二十一章 一次函数综合与测试课后作业题,共27页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。

    数学第二十一章 一次函数综合与测试随堂练习题: 这是一份数学第二十一章 一次函数综合与测试随堂练习题,共24页。试卷主要包含了如图所示,直线分别与轴,已知点,都在直线上,则等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共27页。试卷主要包含了点A,已知正比例函数的图像经过点等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map