数学第二十一章 一次函数综合与测试一课一练
展开
这是一份数学第二十一章 一次函数综合与测试一课一练,共25页。试卷主要包含了直线不经过点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )A.x>-3 B.x>-2 C.x>1 D.x>22、下列函数中,y是x的一次函数的是( )A.y= B.y=﹣3x+1 C.y=2 D.y=x2+13、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B.C. D.4、下列语句是真命题的是( ).A.内错角相等B.若,则C.直角三角形中,两锐角和的函数关系是一次函数D.在中,,那么为直角三角形5、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )A. B. C. D.6、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)7、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )A.甲队的挖掘速度大于乙队的挖掘速度B.开挖2h时,甲、乙两队所挖的河渠的长度相差8mC.乙队在的时段,与之间的关系式为D.开挖4h时,甲、乙两队所挖的河渠的长度相等8、关于一次函数 ,下列说法不正确的是( )A.图象经过点(2,0) B.图象经过第三象限 C.函数y随自变量x的增大而减小 D.当x≥2时,y≤09、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )A.第一象限 B.第二象限C.第三象限 D.第四象限10、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.2、在平面直角坐标系中,已知一次函数的图象经过、两点,则________填“”“”或“3、如图,一次函数和的图象交于点,则不等式的解集是______.4、当k>0时,直线y=kx经过第一、第三象限,从左向右______,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、第四象限,从左向右______,即随着x的增大y反而减小.5、直线y=2x-4的图象是由直线y=2x向______平移______个单位得到.三、解答题(5小题,每小题10分,共计50分)1、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元. (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?2、如图,直线l1的函数解析式为y=﹣x+1,且l1与x轴交于点A,直线l2经过点B,D,直线l1,l2交于点C.(1)求直线l2的函数解析式;(2)求△ABC的面积.3、已知一次函数在轴上的截距为2,且随的增大而减小,求一次函数的解析式,并求出它的图像与坐标轴围成的三角形的面积4、已知点,和直线,则点到直线的距离可用公式计算,例如:求点到直线的距离.解:因为直线,其中,.所以点到直线的距离:.根据以上材料,解答下列问题:(1)求点到直线的距离.(2)已知的圆心的坐标为,半径为,判断与直线的位置关系并说明理由.(3)已知互相平行的直线与之间的距离是,试求的值.5、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:A种产品B种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少? -参考答案-一、单选题1、C【解析】【分析】先将(-1,0)代入y=kx+b中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.【详解】解:将(-1,0)代入y=kx+b中得:-k+b=0,解得:k=b,则不等式化为,∵k>0,∴(x-2)+1>0,解得:x>1,故选:C.【点睛】本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k与b的关系是解答的关键.2、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.3、A【解析】【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【详解】解:作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOB=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.4、C【解析】【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;B、若,则,故原命题是假命题,不符合题意;C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.5、A【解析】【分析】过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.【详解】解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,设直线AB的解析式为,把,代入得,,解得,,∴AB的解析式为,同理可求直线AC的解析式为,设点D坐标为,点M坐标为,∵,∴∵,,∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,∵∠EFM=∠DGM=∠DME∴∠FEM+∠FME=∠DMG+∠FME =90°,∴∠FEM =∠DMG,∵DM=EM,∴△DGM≌△MFE,∴DG=FM,GM=EF,根据坐标可列方程组,,解得,,所以,点M坐标为,故选:A.【点睛】本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.6、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.7、D【解析】【分析】根据图象依次分析判断.【详解】解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;开挖2h时,乙队所挖的河渠的长度为30m,甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;甲队开挖4h时,所挖河渠的长度为,乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;故选:D.【点睛】此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.8、B【解析】【分析】当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.【详解】解:当 时, ,∴图象经过点(2,0),故A正确,不符合题意;∵ ,∴图象经过第一、二、四象限,故B错误,符合题意;∴函数y随自变量x的增大而减小,故C正确,不符合题意;当 时, ,∴当x≥2时,y≤0,故D正确,不符合题意;故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.9、C【解析】【分析】通过一次函数中k和b的符号决定了直线经过的象限来解决问题.【详解】解:因为y=-x+4中,k=-1<0,b=4>0,∴直线y=-x+4经过第一、二、四象限,所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.故选:C.【点睛】本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.10、B【解析】【分析】由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.【详解】解:∵y=kx+b的图象经过点P(1,m),∴k+b=m,当x=-1时,kx-b=-k-b=-(k+b)=-m,即(-1,-m)在函数y=kx-b的图象上.又∵(-1,-m)在y=mx的图象上.∴y=kx-b与y=mx相交于点(-1,-m).则函数图象如图.则不等式-b≤kx-b≤mx的解集为-1≤x≤0.故选:B.【点睛】本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.二、填空题1、【解析】【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.【详解】解:如图,点的坐标为,点的坐标为,,,则.△是等腰直角三角形,,.点的坐标是.同理,在等腰直角△中,,,则.点、均在一次函数的图象上,,解得,,该直线方程是.点,的横坐标相同,都是3,当时,,即,则,.同理,,,,当时,,即点的坐标为,.故答案为,.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.2、【解析】【分析】根据一次函数的性质,当时,y随x的增大而减小,即可得答案.【详解】解:一次函数中,随x的增大而减小,,.故答案为:.【点睛】本题考查了一次函数的性质,关键是掌握一次函数,当时,y随x的增大而增大,当时,y随x的增大而减小.3、x≥1【解析】【分析】结合图象,写出直线y=mx+n在直线y=kx+b下方所对应的自变量的范围即可.【详解】解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(1,2),∴当x≥1时,kx+b≥mx+n,∴不等式的解集为x≥1.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4、 上升 下降【解析】略5、 下 4【解析】略三、解答题1、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: ,解得: ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得: .解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.2、 (1)y=x﹣3(2)【解析】【分析】(1)设直线l2的解析式为,将点B、点D两个点代入求解即可确定函数解析式;(2)当y=0时,代入直线解析式确定点A的坐标,即可得出的底边长,然后联立两个函数解析式得出交点坐标,点C的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l2的解析式为,由直线l2经过点,可得:,解得:,∴直线l2的解析式为;(2)当y=0时,代入直线解析式可得:,解得,∴,∴,联立,解得:,∴,∴.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.3、y=-2x+2;1【解析】【分析】根据截距为2,且y随x的增大而减小即可确定k值,求出解析式即可求出面积.【详解】解:∵一次函数y=kx+k2-2在y轴上的截距为2,∴|k2-2|=2,即k=±2或k'=0,又∵y随x的增大而减小,∴k<0,即k=-2,∴一次函数解析式为y=-2x+2;作出函数图象如图,设坐标轴原点为O,函数图象与x轴交于点B,与y轴交于点A,由解析式可知A(0,2),B(1,0),∴OA=2,OB=1,∴S△AOB=OA•OB=×2×1=1.【点睛】本题主要考查一次函数的知识,熟练掌握一次函数基本知识是解题的关键.4、 (1)(2)相切,理由见解析(3)或【解析】【分析】(1)将点直接代入距离公式计算.(2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,(3)在直线上任取一点,计算该点到的距离,可求得.(1)因为直线,其中,,所以点到直线的距离:,(2)因为直线,其中,,所以圆心到直线的距离::,圆心到直线的距离,与直线相切.(3)在直线上取一点,根据题意得,点到直线的距离是,因为直线,其中,,所以点到直线的距离:,即:,解得:或.【点睛】本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式.5、 (1)A种产品生产400件,B种产品生产200件(2)A种产品生产1000件时,利润最大为460000元【解析】【分析】(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.(1)解:设A种产品生产x件,则B种产品生产(600-x)件,由题意得:,解得:x=400,600-x=200,答:A种产品生产400件,B种产品生产200件.(2)解:设A种产品生产x件,总利润为w元,由题意得:由,得:,因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.【点睛】本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共29页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共28页。试卷主要包含了若实数,直线不经过点等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试复习练习题,共25页。试卷主要包含了一次函数的大致图象是,点A等内容,欢迎下载使用。