|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数专项攻克试题(含详细解析)
    立即下载
    加入资料篮
    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数专项攻克试题(含详细解析)01
    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数专项攻克试题(含详细解析)02
    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数专项攻克试题(含详细解析)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题

    展开
    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了一次函数的大致图象是,如图,已知点K为直线l等内容,欢迎下载使用。

    八年级数学下册第二十一章一次函数专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、关于一次函数的图像与性质,下列说法中正确的是( )
    A.y随x的增大而增大;
    B.当 m=3时,该图像与函数的图像是两条平行线;
    C.不论m取何值,图像都经过点(2,2) ;
    D.不论m取何值,图像都经过第四象限.
    2、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是(  )
    A.B.
    C. D.
    3、一次函数y=2x﹣5的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是(  )

    ①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
    A.1 B.2 C.3 D.4
    5、一次函数的大致图象是( )
    A. B.
    C. D.
    6、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
    A.-3 B.-1 C.2 D.4
    7、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是(  )

    A.两人出发1小时后相遇
    B.王明跑步的速度为8km/h
    C.陈启浩到达目的地时两人相距10km
    D.陈启浩比王明提前1.5h到目的地
    8、已知点,在一次函数的图像上,则m与n的大小关系是( )
    A. B. C. D.无法确定
    9、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是(  )

    A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4
    10、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为(  )
    ①15分钟后,甲仓库内快件数量为180件;
    ②乙仓库每分钟派送快件数量为8件;
    ③8:00时,甲仓库内快件数为400件;
    ④7:20时,两仓库快递件数相同.

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、将一次函数向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.
    2、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.

    3、(1)如果是y关于x的正比例函数,则k=_________.
    (2)若是关于x的正比例函数,m=_________.
    (3)如果y=3x+k-4是y关于x的正比例函数,则k=_____.
    4、当k>0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
    ① b>0时,直线经过第______象限;
    ② b<0时,直线经过第______ 象限.
    当k<0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
    ①b>0时,直线经过第______象限;
    ② b<0时,直线经过第______象限.
    5、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.

    (1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;
    (2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,直线与直线相交于点.

    (1)求m,b的值;
    (2)求的面积;
    (3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.
    2、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.

    (1)则点A的坐标为_______,点B的坐标为______;
    (2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
    (3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
    ①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
    ②试求线段OQ长的最小值.
    3、已知y与成正比例,且当时,;
    (1)求出y与x之间的函数关系式;
    (2)当时,求y的值;
    (3)当时,求x的取值范围.
    4、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).

    (1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
    (2)求甲、乙两人在途中相遇的时间.
    5、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.

    (1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
    (2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
    (3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
    【详解】
    A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
    B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
    C、一次函数,过定点,故本选项不正确;
    D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
    故选D.
    【点睛】
    本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
    2、C
    【解析】
    【分析】
    分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
    【详解】
    解:当两车相遇时,所用时间为120÷(60+90)=小时,
    B车到达甲地时间为120÷90=小时,
    A车到达乙地时间为120÷60=2小时,
    ∴当0≤x≤时,y=120-60x-90x=-150x+120;
    当<x≤时,y=60(x-)+90(x-)=150x-120;
    当<x≤2是,y=60x;
    由函数解析式的当x=时,y=150×-120=80.
    故选:C
    【点睛】
    本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
    3、B
    【解析】
    【分析】
    由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.
    【详解】
    解:∵y=2x-5,
    ∴k>0,b<0,
    故直线经过第一、三、四象限.
    不经过第二象限.
    故选:B.
    【点睛】
    此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.
    4、C
    【解析】
    【分析】
    仔细观察图象:①观察函数图象可以直接得到答案;
    ②观察函数图象可以直接得到答案;
    ③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;
    ④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.
    【详解】
    解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;
    函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,
    一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;
    ∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,
    ∴4a+b=4c+d
    ∴d-b=4(a-c),故④正确.
    综上所述,正确的结论有3个.
    故选:C.
    【点睛】
    本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.
    5、A
    【解析】
    【分析】
    由知直线必过,据此求解可得.
    【详解】
    解:,
    当时,,
    则直线必过,
    如图满足条件的大致图象是:

    故选:A.
    【点睛】
    本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
    6、B
    【解析】
    【分析】
    先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
    【详解】
    解:根据题意,
    ∵y1>y2,
    ∴,
    解得:,
    ∴,
    ∴;,
    ∵当x<1时,y1>y2,

    ∴,
    ∴;
    ∴k的值可以是-1;
    故选:B.
    【点睛】
    本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
    7、C
    【解析】
    【分析】
    根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.
    【详解】
    解:由图象可知,
    两人出发1小时后相遇,故选项A正确;
    王明跑步的速度为24÷3=8(km/h),故选项B正确;
    陈启浩的速度为:24÷1-8=16(km/h),
    陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),
    故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;
    陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;
    故选:C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
    8、A
    【解析】
    【分析】
    根据一次函数的性质,y随x增大而减小判断即可.
    【详解】
    解:知点,在一次函数的图像上,
    ∵-2<0,
    ∴y随x增大而减小,
    ∵,
    ∴,
    故选:A.
    【点睛】
    本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.
    9、C
    【解析】
    【分析】
    点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.
    【详解】
    解: 点K为直线l:y=2x+4上一点,设
    将点K向下平移2个单位,再向左平移a个单位至点K1,

    将点K1向上平移b个单位,向右平1个单位至点K2,

    点K2也恰好落在直线l上,

    整理得:
    故选C
    【点睛】
    本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.
    10、B
    【解析】
    【分析】
    根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.
    【详解】
    解:由题意结合图象可知:
    15分钟后,甲仓库内快件数量为130件,故①说法错误;
    甲仓库揽收快件的速度为:(件分),
    所以时,甲仓库内快件数为:(件,故③说法正确;
    (分,
    即45分钟乙仓库派送快件数量为180件,
    所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;
    所以乙仓库快件的总数量为:(件,
    设分钟后,两仓库快递件数相同,根据题意得:

    解得,
    即时,两仓库快递件数相同,故④说法正确.
    所以说法正确的有③④共2个.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.
    二、填空题
    1、y=x+7
    【解析】
    【分析】
    直接根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把直线y=x+2向上平移5个单位长度后所得直线的解析式为:y=x+2+5,即y=x+7.
    ∴直线AB对应的函数表达式为y=x+7.
    故答案为:y=x+7.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    2、32023
    【解析】
    【分析】
    先利用等边三角形的性质求得P点坐标为(,3),再求得直线的解析式为y=x+,设P1点坐标为(x,x+),利用含30度角的直角三角形的性质求得P1点的纵坐标为9=32,找出规律,即可求解.
    【详解】
    解:过点P作PD⊥轴于点D,
    ∵等边△OAP,且A点坐标为(2,0),
    ∴OA= OP=2,OD=DA=,∠POD=60°,
    ∴PD=3,
    ∴P点坐标为(,3),
    ∵直线y=kx+(k>0)经过点P,
    ∴3=k+,
    解得:k=,
    ∴直线的解析式为y=x+,
    过点P1作PE⊥轴于点E,
    设P1点坐标为(x,x+),
    ∴AE=x-2,P1E=x+,
    ∵∠P1AE=60°,∠AP1E=30°,
    ∴P1E=AE,
    ∴x+=(x-2),
    解得:x=5,
    ∴P1点的纵坐标为9=32,
    同理,P2点的纵坐标为27=33,

    ∴点P2022的纵坐标为32023.
    故答案为:32023.

    【点睛】
    本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
    3、 2 -2 4
    【解析】

    4、 上升 增大 一、二、三 一、三、四 下降 减小 一、二、四 二、三、四
    【解析】

    5、 3 ≤n<
    【解析】
    【分析】
    (1)根据题意和图象,可以得到区域W内的整点个数;
    (2)根据直线y=kx+b过点A和点C,从而可以得到直线的表达式是y=-x+,设平移后的直线解析式是y=-x+m,分别代入(6,2)、(6,1)求得m的值,结合图象即可求得.
    【详解】
    解:(1)由图象可得,

    区域W内的整点的坐标分别为(6,1),(6,2),(7,1),
    即区域W内的整点个数是3个,
    故答案为:3;
    (2)∵直线y=kx+b过点A(5,3),点C(9,0),
    ∴,
    ∴,
    即直线y=kx+b的表达式是y=﹣x+,
    设平移后的直线解析式是y=﹣x+m,
    把(6,2)代入得,2=﹣+m,解得m=,则﹣=,
    把(6,1)代入得,1=﹣+m,解得m=,则﹣=,
    由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围≤n<.
    故答案为:≤n<.
    【点睛】
    本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.
    三、解答题
    1、 (1)m=2,b=3
    (2)12
    (3)或
    【解析】
    【分析】
    (1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.
    (2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;
    (3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.
    (1)
    解:∵点B(m,4)直线l2:y=2x上,
    ∴4=2m,
    ∴m=2,
    ∴点B(2,4),
    将点B(2,4)代入直线得:,
    解得b=3;
    (2)
    将y=0代入,得:x=-6,
    ∴A(-6,0),
    ∴OA=6,
    ∴△AOB的面积==12;
    (3)
    令x=n,则,,
    当C、D在点B左侧时,
    则,
    解得:;
    当C、D在点B右侧时,
    则,
    解得:;
    综上:n的取值范围为或.
    【点睛】
    本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.
    2、 (1)(-3,0);(0,4)
    (2)证明见解析
    (3)①∠QPO,∠BAQ;②线段OQ长的最小值为
    【解析】
    【分析】
    (1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
    (2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
    (3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
    (1)
    解:在y=x+4中,令y=0,得0=x+4,
    解得x=﹣3,
    ∴A(﹣3,0),
    在y=x+4中,令x=0,得y=4,
    ∴B(0,4);
    故答案为:(﹣3,0),(0,4).
    (2)
    证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
    ∵PB=PE,
    ∴∠PBE=∠PEB=α,
    ∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
    ∴∠BPE=2∠OAB.
    (3)
    解:①结论:∠QPO,∠BAQ
    理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
    ∵∠BPE=2∠OAB,
    ∴∠APQ=∠BPE.
    ∴∠APQ﹣∠APB=∠BPE﹣∠APB.
    ∴∠QPO=∠EPA.
    又∵PE=PB,AP=PQ
    ∴∠PEB=∠PBE=∠PAQ=∠AQP.
    ∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
    ∴与∠EPA相等的角有∠QPO,∠BAQ.
    故答案为:∠QPO,∠BAQ.
    ②如图3中,连接BQ交x轴于T.

    ∵AP=PQ,PE=PB,∠APQ=∠BPE,
    ∴∠APE=∠QPB,
    在△APE和△QPB中,,
    ∴△APE≌△QPB(SAS),
    ∴∠AEP=∠QBP,
    ∵∠AEP=∠EBP,
    ∴∠ABO=∠QBP,
    ∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
    ∴∠BAO=∠BTO,
    ∴BA=BT,
    ∵BO⊥AT,
    ∴OA=OT,
    ∴直线BT的解析式为为:,
    ∴点Q在直线y=﹣x+4上运动,
    ∵B(0,4),T(3,0).
    ∴BT=5.
    当OQ⊥BT时,OQ最小.
    ∵S△BOT=×3×4=×5×OQ.
    ∴OQ=.
    ∴线段OQ长的最小值为.
    【点睛】
    本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
    3、 (1)
    (2)
    (3)
    【解析】
    【分析】
    (1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;
    (2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;
    (3)通过解不等式2x+4<−2即可.
    (1)
    解:设y=k(x+2)(k≠0),
    当x=1,y=6得k(1+2)=6,
    解得k=2,
    所以y与x之间的函数关系式为y=2x+4;
    (2)
    x=−3 时,y=2×(−3)+4=−2;
    (3)
    y<−2 时,2x+4<−2,
    解得.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    4、 (1)图象见解析;
    (2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
    【解析】
    【分析】
    (1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
    (2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
    (1)
    乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.

    (2)
    根据题意结合图象可知甲、乙两人在途中相遇3次.
    如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
    根据题意可设的解析式为:,
    ∴,
    解得:,
    ∴的解析式为.
    ∵甲的步行速度为100m/min,他每走半个小时就休息15min,
    ∴甲第一次休息时走了米,
    对于,当时,即,
    解得:.
    故第一次相遇的时间为40分钟的时候;
    设BC段的解析式为:,
    根据题意可知B(45,3000),D (75,6000).
    ∴,
    解得:,
    故BC段的解析式为:.
    相遇时即,故有,
    解得:.
    故第二次相遇的时间为60分钟的时候;
    对于,当时,即,
    解得:.
    故第三次相遇的时间为80分钟的时候;

    综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
    【点睛】
    本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
    5、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;
    (2)y=﹣2x+2;
    (3)线段PC所在直线的解析式为:y=4x﹣4或y=x+
    【解析】
    【分析】
    (1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;
    (2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;
    (3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.
    (1)
    解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,
    ∴A(2,0),B(0,2),
    ∴OA=OB=2,
    ∴∠OAB=∠OBA=45°,
    ∴.
    当线段PC与线段AB平行时,可画出图形,

    设PC所在直线的解析式为y=﹣x+m,
    ∵C(1,0),
    ∴﹣1+m=0,解得,m=1,
    ∴PC所在直线的解析式为:y=﹣x+1,
    ∴P(0,1);
    此时,,
    ∴.
    即P(0,1);△POC的面积与△AOB的面积的比值为;
    (2)
    解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),
    设PC所在直线的解析式为:y=kx+b,
    ∴,解得,,
    ∴线段PC所在直线的解析式为:y=﹣2x+2.
    (3)
    解:根据题意,需要分类讨论:
    ①当点P在线段AB上时,如图所示,此时,

    过点P作PD⊥x轴于点D,
    ∴,解得:,
    ∴AD=PD=,
    ∴OD=OA﹣AD=2﹣=,
    ∴P(,),
    设线段PC所在直线的解析式:y=k1x+b1,
    ∴,解得,,
    ∴线段PC所在直线的解析式:y=4x﹣4;
    ②当点P在线段OB上时,如图所示,此时,

    ∴,解得,,
    ∴P(0,),
    设线段PC所在直线的解析式:y=k2x+b2,
    ∴,解得,,
    ∴线段PC所在直线的解析式:y=x+;
    综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.
    【点睛】
    本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题,共27页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试当堂检测题: 这是一份数学八年级下册第二十一章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了如图,已知点K为直线l等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题: 这是一份数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共31页。试卷主要包含了已知点,若一次函数,一次函数的图象不经过的象限是,,两地相距80km,甲等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map