数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题
展开
这是一份数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共31页。试卷主要包含了已知点,若一次函数,一次函数的图象不经过的象限是,,两地相距80km,甲等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )
A.x>-3 B.x>-2 C.x>1 D.x>2
2、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
3、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )
A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4
4、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )
A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定
5、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
6、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A. B. C. D.
7、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )
A. B.
C. D.
9、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
10、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
2、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.
3、在平面直角坐标系中,已知一次函数的图象经过、两点,则________填“”“”或“
4、下列函数:①;②;③;④;⑤.其中一定是一次函数的有____________.(只是填写序号)
5、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.
分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.
解:设这个一次函数的解析为:y=kx+b
因为y=kx+b的图象过点(3,5)与(-4,-9),所以
,
解方程组得:,
这个一次函数的解析式为:___
三、解答题(5小题,每小题10分,共计50分)
1、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:
目的地车型
A村(元/辆)
B村(元/辆)
大货车
80
90
小货车
40
60
(1)试求这18辆车中大、小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;
(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
2、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
3、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
(2)试比较哪家公司更优惠?说明理由.
4、【数学阅读】
如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
【推广延伸】
如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
【解决问题】
如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.
(1)点B的坐标为_____________;
(2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;
(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.
5、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
(1)求今年每套A型、B型一体机的价格各是多少万元?
(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
-参考答案-
一、单选题
1、C
【解析】
【分析】
先将(-1,0)代入y=kx+b中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.
【详解】
解:将(-1,0)代入y=kx+b中得:-k+b=0,解得:k=b,
则不等式化为,
∵k>0,
∴(x-2)+1>0,
解得:x>1,
故选:C.
【点睛】
本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k与b的关系是解答的关键.
2、A
【解析】
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
3、C
【解析】
【分析】
点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.
【详解】
解: 点K为直线l:y=2x+4上一点,设
将点K向下平移2个单位,再向左平移a个单位至点K1,
将点K1向上平移b个单位,向右平1个单位至点K2,
点K2也恰好落在直线l上,
整理得:
故选C
【点睛】
本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.
4、A
【解析】
【分析】
根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.
【详解】
解:∵一次函数y=3x+a的一次项系数为3>0,
∴y随x的增大而增大,
∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,
∴y1<y2,
故选:A.
【点睛】
本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.
5、D
【解析】
【分析】
根据一次函数图象与系数的关系解答即可.
【详解】
解:一次函数、是常数,的图象不经过第三象限,
且,
故选:D.
【点睛】
本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
6、A
【解析】
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
7、C
【解析】
【分析】
根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.
【详解】
解:∵k=-2<0,b=1>0,
∴一次函数y=-2x+1的图象经过第一、二、四象限,
∴一次函数y=-2x+1的图象不经过第三象限.
故选:C.
【点睛】
本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.
8、B
【解析】
【分析】
利用一次函数的性质逐项进行判断即可解答.
【详解】
解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;
C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
故选B.
【点睛】
本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.
9、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
10、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
二、填空题
1、 一次 任意实数
【解析】
略
2、32023
【解析】
【分析】
先利用等边三角形的性质求得P点坐标为(,3),再求得直线的解析式为y=x+,设P1点坐标为(x,x+),利用含30度角的直角三角形的性质求得P1点的纵坐标为9=32,找出规律,即可求解.
【详解】
解:过点P作PD⊥轴于点D,
∵等边△OAP,且A点坐标为(2,0),
∴OA= OP=2,OD=DA=,∠POD=60°,
∴PD=3,
∴P点坐标为(,3),
∵直线y=kx+(k>0)经过点P,
∴3=k+,
解得:k=,
∴直线的解析式为y=x+,
过点P1作PE⊥轴于点E,
设P1点坐标为(x,x+),
∴AE=x-2,P1E=x+,
∵∠P1AE=60°,∠AP1E=30°,
∴P1E=AE,
∴x+=(x-2),
解得:x=5,
∴P1点的纵坐标为9=32,
同理,P2点的纵坐标为27=33,
,
∴点P2022的纵坐标为32023.
故答案为:32023.
【点睛】
本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
3、
【解析】
【分析】
根据一次函数的性质,当时,y随x的增大而减小,即可得答案.
【详解】
解:一次函数中,
随x的增大而减小,
,
.
故答案为:.
【点睛】
本题考查了一次函数的性质,关键是掌握一次函数,当时,y随x的增大而增大,当时,y随x的增大而减小.
4、②③⑤
【解析】
【分析】
根据一次函数的定义条件解答即可.
【详解】
解:①y=kx当k=0时原式不是一次函数;
②是一次函数;
③由于=x,则是一次函数;
④y=x2+1自变量次数不为1,故不是一次函数;
⑤y=22−x是一次函数.
故答案为:②③⑤.
【点睛】
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
5、y=2x-1
【解析】
略
三、解答题
1、 (1)大货车用12辆,小货车用6辆
(2)(4≤x≤12,且x为整数)
(3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元
【解析】
【分析】
(1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
(1)
设大货车用a辆,小货车用b辆,根据题意得:
解得:.
∴大货车用12辆,小货车用6辆.
(2)
设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,
y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.
4≤x≤12,且x为整数.
(4≤x≤12,且x为整数)
(3)
由题意得:10x+8(10-x)≥96,解得:x≥8,
又∵4≤x≤12,
∴8≤x≤12且为整数,
∵y=10x+1240,k=10>0,y随x的增大而增大,
∴当x=8时,y最小,
最小值为y=10×8+1240=1320(元).
答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.
【点睛】
本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.
2、 (1)(,3)或(4,3)
(2)45°
(3)y=-x+
【解析】
【分析】
(1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;
(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;
(3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.
(1)
解:∵是直角三角形,点,点
∴①当时,
∵轴
∴点坐标为;
②当时,,如图过点Q作,垂足为C
在中,由勾股定理知
设,在中,由勾股定理知
在中,由勾股定理知
∴
解得
∴
∴
∴点坐标为;
综上所述,点坐标为或.
(2)
解:如图,点P翻折后落在线段AB上的点E处,
则
又∵
∴
∴
∴
∴
∴点E是AB的中点
过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,
在和中
∵∠AEM=∠BEF∠EMA=∠EFBAE=BE
∴
∴
∴EF=
∵
∴
在和中
∵
∴
∴
∴
∴.
(3)
解:如图
由旋转的性质可知
∵
∴
在和中
∠P'QA=∠PAQAQ=QA∠P'AQ=∠PQA
∴
∴
∴
过点A作AG⊥BQ于G
设
∴
在中,,由勾股定理得
解得
∴
∴点的坐标分别为
设过点的直线解析式为
将两点坐标代入得
解得:
∴过点的直线解析式为.
【点睛】
本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.
3、 (1)y甲=25x+2 000;y乙=35x
(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析
【解析】
【分析】
(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;
(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得
(1)
解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),
依题意得y甲=25x+2 000;y乙=35x;
(2)
解:当y甲>y乙时,即25x+2 000>35x,
解得:x<200;
当y甲=y乙时,即25x+2 000=35x,
解得:x=200;
当y甲<y乙时,即25x+2 000<35x,
解得:x>200.
∴当0<x<200时,选择乙公司更优惠;
当x=200时,选择两公司费用一样多;
当x>200时,选择甲公司更优惠.
【点睛】
此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
4、推广延伸:PD=PE+CF,证明见解析;
解决问题:(1)(0,3);(2)PE=3+d或PE=3-d;(3)或
【解析】
【分析】
推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;
解决问题:
(1)由点B到x轴的距离及点B在y轴正半轴上即可得到点B的坐标;
(2)分两种情况:当点P在CB延长线上时,由推广延伸的结论即可得PE与d的关系;当点P在线段CB上时,由阅读材料中的结论可得PE与d的关系;
(3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点P在CB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.
【详解】
推广延伸:猜想:PD=PE+CF
证明如下:
连接AP,如图3
∵
即
∴AB=AC
∴PD-CF=PE
∴PD=PE+CF
解决问题:
(1)∵点B在y轴正半轴上,点B到x轴的距离为3
∴B(0,3)
故答案为:(0,3)
(2)当点P在CB延长线上时,如图
由推广延伸的结论有:PE=OB+PF=3+d;
当点P在线段CB上时,如图
由阅读材料中的结论可得PE=OB-PF=3-d;
故答案为:PE=3+d或PE=3-d
(3)∵A(-4,0),B(0,3)
∴OA=4,OB=3
由勾股定理得:
∴AC=AB=5
∴OC=AC-OA=5-4=1
∴C(1,0)
设直线CB的解析式为y=kx+b(k≠0)
把C、B的坐标分别代入得:
解得:
即直线CB的解析式为y=-3x+3
由(2)的结论知:PE=3+1=4或PE=3-1=2
∵点P在射线CB上
∴点P的纵坐标为正,即点P的纵坐标为4或2
当y=4时,-3x+3=4,解得:,即点P的坐标为;
当y=2时,-3x+3=2,解得:,即点P的坐标为
综上:点P的坐标为或
【点睛】
本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.
5、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元
(2)1800万
【解析】
【分析】
(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;
(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.
(1)
设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
由题意得:,
解得:
答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;
(2)
设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,
由题意可得:1.8(1100-m)≥1.2(1+25%)m,
解得:m≤600,
设明年需投入W万元,
W=1.2×(1+25%)m+1.8(1100-m)
=-0.3m+1980,
∵-0.3<0,
∴W随m的增大而减小,
∵m≤600,
∴当m=600时,W有最小值-0.3×600+1980=1800,
故该市明年至少需投入1800万元才能完成采购计划.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了一次函数的大致图象是,如图,已知点K为直线l等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题,共27页。试卷主要包含了一次函数的图象不经过的象限是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后作业题,共26页。试卷主要包含了若一次函数,直线不经过点,已知正比例函数的图像经过点等内容,欢迎下载使用。