冀教版八年级下册第二十一章 一次函数综合与测试综合训练题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共34页。
八年级数学下册第二十一章一次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点,在一次函数y=-2x-b的图像上,则m与n的大小关系是( )
A.m>n B.m=n C.m<n D.无法确定
2、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )
A. B. C. D.
3、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
4、对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围( )
A.k<0 B.k≤0 C.k>0 D.k≥0
5、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
6、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2) B.(,) C.(,) D.(,)
7、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
8、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )
A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
10、平面直角坐标系中,点的坐标为,一次函数的图像与轴、轴分别相交于点、,若点在的内部,则的取值范围为( )
A.或 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.
2、已知:直线与直线的图象交点如图所示,则方程组的解为______.
3、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.
4、已知一次函数的图象经过第一、二、四象限,写出一个满足条件的一次函数的表达式 ___.
5、已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−x+b上,则y1,y2,y3的值的大小关系是______.
三、解答题(5小题,每小题10分,共计50分)
1、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
(2)试比较哪家公司更优惠?说明理由.
2、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.
(1)求,,的值;
(2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;
(3)在点运动的过程中,当取得最小值时,直接写出的值.
3、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°
(1)点C坐标为 ,OC= ,△BOC的面积为 ,= ;
(2)点C关于x轴的对称点C′的坐标为 ;
(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为 ,请说明理由;
(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.
4、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.
(1)a= ;b= ;
(2)求点M的坐标(用含m代数式表示);
(3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.
5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
(1)求这个一次函数的解析式;
(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由k=−2<0,利用一次函数的性质可得出y随x的增大而减小,结合<可得出m>n.
【详解】
解:∵k=−2<0,
∴y随x的增大而减小,
又∵点A(,m),B(,n)在一次函数y=−2x+1的图象上,且<,
∴m>n.
故选:A.
【点睛】
本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
2、B
【解析】
【分析】
过作轴,可证得,从而得到,,可得到再由,,即可求解.
【详解】
解:过作轴,则,
对于直线,令,得到,即,,
令,得到,即,,
,
为等腰直角三角形,即,,
,
,
在和中,
,
,
,,即,
,
设直线的解析式为,
,
b=2-5k+b=3 ,
解得 .
过、两点的直线对应的函数表达式是.
故选:B
【点睛】
本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
3、C
【解析】
【分析】
利用一次函数的增减性性质判定即可.
【详解】
∵直线y=-2x+3的k=-2<0,
∴y随x的增大而减小,
∵-2<3,
∴,
故选C.
【点睛】
本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
4、C
【解析】
略
5、C
【解析】
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
6、C
【解析】
【分析】
先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
【详解】
∵∠OBA=90°,A(4,4),且,点D为OB的中点,
∴点D(2,0),AC=1,BC=3,点C(4,3),
设直线AO的解析式为y=kx,
∴4=4k,
解得k=1,
∴直线AO的解析式为y=x,
过点D作DE⊥AO,交y轴于点E,交AO于点F,
∵∠OBA=90°,A(4,4),
∴∠AOE=∠AOB=45°,
∴∠OED=∠ODE=45°,OE=OD,
∴DF=FE,
∴点E是点D关于直线AO的对称点,
∴点E(0,2),
连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
设CE的解析式为y=mx+n,
∴,
解得,
∴直线CE的解析式为y=x+2,
∴y=14x+2y=x,
解得,
∴使四边形PDBC周长最小的点P的坐标为(,),
故选C.
【点睛】
本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
7、C
【解析】
【分析】
由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
【详解】
解:令直线中,得到,故,
令直线中,得到,故,
由勾股定理可知:,
∵,且,
∴,,
过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:
∵为等边三角形,
∴,
∴,
∴,
∴,
∴,
同理,∵为等边三角形,
∴,,
∴,
∴,
∴,
设直线CD的解析式为:y=kx+b,代入和,
得到:,解得,
∴CD的解析式为:,
与直线联立方程组,
解得,故E点坐标为,
故选:C.
【点睛】
本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
8、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
9、B
【解析】
【分析】
根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
【详解】
解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
(5x+5×x)÷5=x(m/min),
∵公司位于家正西方500米,
∴(−10−2)×x=500+(5+2.5)x,
解得x=200,
∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
爸爸到达公司时,丁丁距离商店路程为:
3500-(−12)×(300+200)=m.
综上,正确的选项为B.
故选:B.
【点睛】
本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
10、C
【解析】
【分析】
由求出A,B的坐标,根据点的坐标得到点在直线上,求出直线与y轴交点C的坐标,解方程组求出交点E的坐标,即可得到关于m的不等式组,解之求出答案.
【详解】
解:当中y=0时,得x=-9;x=0时,得y=12,
∴A(-9,0),B(0,12),
∵点的坐标为,
当m=1时,P(3,0);当m=2时,P(6,-4),
设点P所在的直线解析式为y=kx+b,将(3,0),(6,-4)代入,
∴,
∴点在直线上,
当x=0时,y=4,∴C(0,4),
,解得,∴E(-3,8),
∵点在的内部,
∴,
∴-1
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了已知一次函数y=,已知点,都在直线上,则,已知正比例函数的图像经过点等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共31页。试卷主要包含了已知点,若一次函数,一次函数的图象不经过的象限是,,两地相距80km,甲等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后复习题,共27页。试卷主要包含了直线不经过点,若点等内容,欢迎下载使用。