终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第二十一章一次函数章节测试试题(含详细解析)

    立即下载
    加入资料篮
    2022年最新冀教版八年级数学下册第二十一章一次函数章节测试试题(含详细解析)第1页
    2022年最新冀教版八年级数学下册第二十一章一次函数章节测试试题(含详细解析)第2页
    2022年最新冀教版八年级数学下册第二十一章一次函数章节测试试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试课后复习题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后复习题,共27页。试卷主要包含了直线不经过点,若点等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一次函数,,且随的增大而减小,则其图象可能是( )
    A.B.
    C.D.
    2、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )
    A.B.
    C.D.
    3、关于一次函数,下列结论不正确的是( )
    A.图象与直线平行
    B.图象与轴的交点坐标是
    C.随自变量的增大而减小
    D.图象经过第二、三、四象限
    4、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
    A.小于0B.等于0C.大于0D.非负数
    5、直线不经过点( )
    A.(0,0)B.(﹣2,3)C.(3,﹣2)D.(﹣3,2)
    6、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
    A.B.C.D.
    7、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为( )
    A.B.C.D.
    8、已知点和点在一次函数的图象上,且,下列四个选项中k的值可能是( )
    A.-3B.-1C.1D.3
    9、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
    A.y1>y2B.y1<y2C.y1=y2D.无法确定
    10、下列函数中,一次函数是( )
    A.B.C.D.(m、n是常数)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.
    2、点,是直线上的两点,则__.(填,或
    3、下列函数:①;②;③;④;⑤.其中一定是一次函数的有____________.(只是填写序号)
    4、如图,直线的解析式为,直线的解析式为,为上的一点,且点的坐标为,作直线轴,交直线于点,再作于点,交直线于点,作轴,交直线于点,再作,交直线于点,作轴,交直线于点按此作法继续作下去,则的坐标为________,的坐标为________.
    5、将直线向上平移1个单位后的直线的表达式为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、【数学阅读】
    如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
    小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    【推广延伸】
    如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
    【解决问题】
    如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.
    (1)点B的坐标为_____________;
    (2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;
    (3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.
    2、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
    (1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
    (2)试比较哪家公司更优惠?说明理由.
    3、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
    (1)求小龚出发36分钟时,离家的距离;
    (2)求出AB段的图象的函数解析式;
    (3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
    4、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为,正立方体的底面正方形的面积记为.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.
    (1)正立方体的棱长为______cm,______;
    (2)当圆柱形水槽内水面高度为12cm时,求注水时间是几秒?
    (3)铁块完全拉出时,水面高度为______cm.
    5、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
    (1)求对角线AB所在直线的函数关系式;
    (2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
    (3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.
    【详解】
    解:一次函数的图象是随的增大而减小,
    ∴ ,

    又,

    一次函数的图象经过第二、三、四象限.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    2、A
    【解析】

    3、D
    【解析】
    【分析】
    根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
    【详解】
    解:A、函数的图象与直线平行,故本选项说法正确;
    B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
    C、,所以随自变量的增大而减小,故本选项说法正确;
    D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
    故选:D.
    【点睛】
    本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
    4、C
    【解析】
    【分析】
    一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
    【详解】
    解:如图,函数的图象经过第一、二、三象限,
    则函数的图象与轴交于正半轴,

    故选C
    【点睛】
    本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
    5、B
    【解析】
    【分析】
    将各点代入函数解析式即可得.
    【详解】
    解:A、当时,,即经过点,此项不符题意;
    B、当时,,即不经过点,此项符合题意;
    C、当时,,即经过点,此项不符题意;
    D、当时,,即经过点,此项不符题意;
    故选:B.
    【点睛】
    本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
    6、D
    【解析】
    【分析】
    先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
    【详解】
    解: 一次函数,其中y的值随x值的增大而减小,

    当时,则 解得,故A不符合题意,
    当时,则 解得 故B不符合题意;
    当时,则 解得 故C不符合题意;
    当时,则 解得 故D符合题意;
    故选D
    【点睛】
    本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
    7、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    8、A
    【解析】
    【分析】
    由m-1<m+1时,y1>y2,可知y随x增大而减小,则比例系数k+2<0,从而求出k的取值范围.
    【详解】
    解:当m-1<m+1时,y1>y2,y随x的增大而减小,
    ∴k+2<0,得k<﹣2.
    故选:A.
    【点睛】
    本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.
    9、A
    【解析】
    【分析】
    根据一次函数的性质得出y随x的增大而减小,进而求解.
    【详解】
    由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
    ∵-3<2,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
    10、B
    【解析】
    【分析】
    根据一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数逐一判断即可.
    【详解】
    解:A.右边不是整式,不是一次函数,不符合题意;
    B.y=-2x是一次函数,符合题意;
    C.y=x2+2中自变量的次数为2,不是一次函数,不符合题意;
    D.y=mx+n(m,n是常数)中m=0时,不是一次函数,不符合题意;
    故选:B.
    【点睛】
    本题考查一次函数的定义,解题的关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.
    二、填空题
    1、自变量
    【解析】

    2、
    【解析】
    【分析】
    根据正比例函数的增减性进行判断即可直接得出.
    【详解】
    解:,
    y随着x的增大而减小,


    故答案为:.
    【点睛】
    题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.
    3、②③⑤
    【解析】
    【分析】
    根据一次函数的定义条件解答即可.
    【详解】
    解:①y=kx当k=0时原式不是一次函数;
    ②是一次函数;
    ③由于=x,则是一次函数;
    ④y=x2+1自变量次数不为1,故不是一次函数;
    ⑤y=22−x是一次函数.
    故答案为:②③⑤.
    【点睛】
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    4、
    【解析】
    【分析】
    过点 作 轴于点D,点 作 轴于点E,可先求出点 的坐标为 ,从而得到,进而得到 ,得到 ,同理 ,可得到, ,再由轴,可得到 ,再根据等腰三角形的性质可得 ,进而求出 ,同理得到点 ,由此发现规律,即可求解.
    【详解】
    解:如图,过点 作 轴于点D,点 作 轴于点E,
    ∵点的坐标为,轴,
    ∴点 的纵坐标为 ,
    ∴当时 , ,
    ∴点 的坐标为 ,
    ∴OD=3, ,
    ∴ ,
    ∴ ,
    ∴ ,
    ∵轴,
    ∴ ,
    同理 ,
    ∴ ,
    ∴, ,
    ∵,
    ∴ ,
    ∵轴,
    ∴,
    ∴,
    ∴ ,
    ∵,
    ∴ ,
    ∵ ,
    ∴ ,
    ∴ ,
    ∴点 ,
    同理点 ,

    由此得到 ,
    ∴的坐标为 .
    故答案为: ,
    【点睛】
    本题主要考查了一次函数的性质,等腰三角形的性质,直角三角形的性质,根据题意得到规律是解题的关键.
    5、
    【解析】
    【分析】
    直线向上平移1个单位,将表达式中x保持不变,等号右面加1即可.
    【详解】
    解:由题意知平移后的表达式为:
    故答案为.
    【点睛】
    本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减.
    三、解答题
    1、推广延伸:PD=PE+CF,证明见解析;
    解决问题:(1)(0,3);(2)PE=3+d或PE=3-d;(3)或
    【解析】
    【分析】
    推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;
    解决问题:
    (1)由点B到x轴的距离及点B在y轴正半轴上即可得到点B的坐标;
    (2)分两种情况:当点P在CB延长线上时,由推广延伸的结论即可得PE与d的关系;当点P在线段CB上时,由阅读材料中的结论可得PE与d的关系;
    (3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点P在CB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.
    【详解】
    推广延伸:猜想:PD=PE+CF
    证明如下:
    连接AP,如图3


    ∴AB=AC
    ∴PD-CF=PE
    ∴PD=PE+CF
    解决问题:
    (1)∵点B在y轴正半轴上,点B到x轴的距离为3
    ∴B(0,3)
    故答案为:(0,3)
    (2)当点P在CB延长线上时,如图
    由推广延伸的结论有:PE=OB+PF=3+d;
    当点P在线段CB上时,如图
    由阅读材料中的结论可得PE=OB-PF=3-d;
    故答案为:PE=3+d或PE=3-d
    (3)∵A(-4,0),B(0,3)
    ∴OA=4,OB=3
    由勾股定理得:
    ∴AC=AB=5
    ∴OC=AC-OA=5-4=1
    ∴C(1,0)
    设直线CB的解析式为y=kx+b(k≠0)
    把C、B的坐标分别代入得:
    解得:
    即直线CB的解析式为y=-3x+3
    由(2)的结论知:PE=3+1=4或PE=3-1=2
    ∵点P在射线CB上
    ∴点P的纵坐标为正,即点P的纵坐标为4或2
    当y=4时,-3x+3=4,解得:,即点P的坐标为;
    当y=2时,-3x+3=2,解得:,即点P的坐标为
    综上:点P的坐标为或
    【点睛】
    本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.
    2、 (1)y甲=25x+2 000;y乙=35x
    (2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析
    【解析】
    【分析】
    (1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;
    (2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得
    (1)
    解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),
    依题意得y甲=25x+2 000;y乙=35x;
    (2)
    解:当y甲>y乙时,即25x+2 000>35x,
    解得:x<200;
    当y甲=y乙时,即25x+2 000=35x,
    解得:x=200;
    当y甲<y乙时,即25x+2 000<35x,
    解得:x>200.
    ∴当0<x<200时,选择乙公司更优惠;
    当x=200时,选择两公司费用一样多;
    当x>200时,选择甲公司更优惠.
    【点睛】
    此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
    3、 (1)36千米
    (2)y=90x-24 (0.8≤x≤2)
    (3)1.2小时
    【解析】
    【分析】
    (1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
    (2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
    (3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
    (1)
    在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
    (2)
    由图象知: ,
    设AB段的函数解析式为:
    把A、B两点的坐标分别代入上式得:
    解得:
    ∴AB段的函数解析式为(0.8≤x≤2)
    (3)
    由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
    所以在中,当y=84时,即,得
    即小龚离目的地还有72千米,小龚行驶了1.2小时.
    【点睛】
    本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.
    4、 (1)10,4
    (2)15.2秒
    (3)17.5
    【解析】
    【分析】
    (1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm3/s,圆柱的底面积为scm2,得到关于x、s的二元一次方程组,可得到水槽的底面面积,即可求解;
    (2)根据A(12、10)、B(28、20)求出线段AB的解析式,把y=12代入解析式,即可求解;
    (3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.
    (1)
    解:由图2得:
    ∵12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
    ∴正立方体的棱长为10cm;
    由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm3,
    设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:

    解得:
    ∴水槽的底面面积为400cm2,
    ∵正立方体的棱长为10cm,
    ∴正立方体的底面正方形的面积=10×10=100 cm2,
    ∴S1:S2=400:100=4:1
    (2)
    设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:,
    解得:
    ∴y=x+,
    当y=12时,x+b=12,
    解得:x=15.2,
    ∴注水时间是15.2秒;
    (3)
    ∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,
    设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.
    【点睛】
    本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.
    5、(1);(2)5;(3)点P的坐标为(,-)或(-,)
    【解析】
    【分析】
    (1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
    (2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
    (3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
    (方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
    【详解】
    解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
    ∴AO=CB=4,OB=AC=8,
    ∴A点坐标为(0,4),B点坐标为(8,0).
    设对角线AB所在直线的函数关系式为y=kx+b,
    则有,解得:,
    ∴对角线AB所在直线的函数关系式为y=-x+4.
    (2)∵∠AOB=90°,
    ∴勾股定理得:AB==4,
    ∵MN垂直平分AB,
    ∴BN=AN=AB=2.
    ∵MN为线段AB的垂直平分线,
    ∴AM=BM
    设AM=a,则BM=a,OM=8-a,
    由勾股定理得,a2=42+(8-a)2,
    解得a=5,即AM=5.
    (3)(方法一)∵OM=3,
    ∴点M坐标为(3,0).
    又∵点A坐标为(0,4),
    ∴直线AM的解析式为y=-x+4.
    ∵点P在直线AB:y=-x+4上,
    ∴设P点坐标为(m,-m+4),
    点P到直线AM:x+y-4=0的距离h==.
    △PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
    解得m=± ,
    故点P的坐标为(,-)或(-,).
    (方法二)∵S长方形OACB=8×4=32,
    ∴S△PAM=32.
    设点P的坐标为(x,-x+4).
    当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
    解得:x=,
    ∴点P的坐标为(,-);
    当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
    解得:x=-,
    ∴点P的坐标为(-,).
    综上所述,点P的坐标为(,-)或(-,).
    【点睛】
    本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了已知一次函数y=,已知点,都在直线上,则,已知正比例函数的图像经过点等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共31页。试卷主要包含了已知点,若一次函数,一次函数的图象不经过的象限是,,两地相距80km,甲等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共26页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map