搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第二十一章一次函数同步测试试题(含解析)

    2022年最新冀教版八年级数学下册第二十一章一次函数同步测试试题(含解析)第1页
    2022年最新冀教版八年级数学下册第二十一章一次函数同步测试试题(含解析)第2页
    2022年最新冀教版八年级数学下册第二十一章一次函数同步测试试题(含解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试测试题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试测试题,共28页。试卷主要包含了下列不能表示是的函数的是,直线不经过点等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
    2、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )

    A.①② B.①③ C.②④ D.①②④
    3、若一次函数的图像经过第一、三、四象限,则的值可能为( )
    A.-2 B.-1 C.0 D.2
    4、下列不能表示是的函数的是( )
    A.

    0
    5
    10
    15

    3
    3.5
    4
    4.5
    B.
    C.
    D.
    5、关于一次函数,下列结论不正确的是( )
    A.图象与直线平行
    B.图象与轴的交点坐标是
    C.随自变量的增大而减小
    D.图象经过第二、三、四象限
    6、点和点都在直线上,则与的大小关系为( )
    A. B. C. D.
    7、已知点,在一次函数的图像上,则m与n的大小关系是( )
    A. B. C. D.无法确定
    8、如图,直线与x轴交于点B,与y轴交于点C,点,D为线段的中点,P为y轴上的一个动点,连接、,当的周长最小时,点P的坐标为( )

    A. B. C. D.
    9、直线不经过点(  )
    A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
    10、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )
    A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+60
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.

    2、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.
    3、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.

    4、用待定系数法确定一次函数表达式所需要的步骤是什么?
    ①设——设函数表达式y=___,
    ②代——将点的坐标代入y=kx+b中,列出关于___、___的方程
    ③求——解方程,求k、b
    ④写——把求出的k、b值代回到表达式中即可.
    5、一次函数y=kx+b(k≠0)的图象是_______.
    三、解答题(5小题,每小题10分,共计50分)
    1、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).

    (1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是   ;
    (2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
    (3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
    2、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.

    (1)求k的值;
    (2)求四边形OCNB的面积;
    (3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
    3、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).
    (1)求证:点(﹣2,﹣3)在直线l2上;
    (2)当m=2时,请判断直线l1与l2是否相交?
    4、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).

    (1)求点B的坐标及点O到直线AB的距离;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
    5、已知y与x﹣2成正比例,且当x=1时,y=﹣2

    (1)求变量y与x的函数关系式;
    (2)请在给出的平面直角坐标系中画出此函数的图象;
    (3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集   .

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
    【详解】
    ∵正比例函数y=3x中,k=3>0,
    ∴y随x的增大而增大,
    ∵x1>x2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
    2、A
    【解析】
    【分析】
    根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:由题意可得:甲步行的速度为(米分);
    由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
    故①结论正确;
    ∴乙步行的速度为米/分,
    故②结论正确;
    乙走完全程的时间(分),
    乙到达终点时,甲离终点距离是:(米),
    故③结论错误;
    设9分到23分钟这个时刻的函数关系式为,则把点代入得:
    ,解得:,
    ∴,
    设23分钟到30分钟这个时间的函数解析式为,把点代入得:
    ,解得:,
    ∴,
    把分别代入可得:或,
    故④错误;
    故正确的结论有①②.
    故选:A.
    【点睛】
    本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
    3、D
    【解析】
    【分析】
    利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.
    【详解】
    解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,
    ∴m-1>0,
    ∴m>1,
    ∴m的值可能为2.
    故选:D.
    【点睛】
    本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.
    4、B
    【解析】
    【分析】
    根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
    【详解】
    解:A、根据图表进行分析为一次函数,设函数解析式为:,
    将,,,
    分别代入解析式为:

    解得:,,
    所以函数解析式为:,
    ∴y是x的函数;
    B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
    C、D选项从图象及解析式看可得y是x的函数.
    故选:B.
    【点睛】
    题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
    5、D
    【解析】
    【分析】
    根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
    【详解】
    解:A、函数的图象与直线平行,故本选项说法正确;
    B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
    C、,所以随自变量的增大而减小,故本选项说法正确;
    D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
    故选:D.
    【点睛】
    本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
    6、B
    【解析】
    【分析】
    根据 ,可得 随 的增大而减小,即可求解.
    【详解】
    解:∵ ,
    ∴ 随 的增大而减小,
    ∵ ,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
    7、A
    【解析】
    【分析】
    根据一次函数的性质,y随x增大而减小判断即可.
    【详解】
    解:知点,在一次函数的图像上,
    ∵-20)经过点P,
    ∴3=k+,
    解得:k=,
    ∴直线的解析式为y=x+,
    过点P1作PE⊥轴于点E,
    设P1点坐标为(x,x+),
    ∴AE=x-2,P1E=x+,
    ∵∠P1AE=60°,∠AP1E=30°,
    ∴P1E=AE,
    ∴x+=(x-2),
    解得:x=5,
    ∴P1点的纵坐标为9=32,
    同理,P2点的纵坐标为27=33,

    ∴点P2022的纵坐标为32023.
    故答案为:32023.

    【点睛】
    本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
    4、 kx+b k b
    【解析】

    5、一条直线
    【解析】

    三、解答题
    1、 (1)P1,P3
    (2)0≤t≤4
    (3)3≤b<5或﹣5<b≤﹣3
    【解析】
    【分析】
    (1)作出直线AB图象,根据到直线的距离即可得出结论;
    (2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;
    (3)根据图象找出临界值,再根据对称性写全取值范围即可.
    (1)
    解:作AB图象如图,
    P2到AB的距离为3不符合和谐点条件,
    P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,
    故直线AB的和谐点为P1,P3;
    故答案为:P1,P3;
    (2)
    解:∵点P为直线y=x+1上一点,
    ∴设P点坐标为(t,t+1),
    寻找直线上的点,使该点到AB垂线段的距离为2,
    ∴|t+1-3|=2,
    解得t=0或t'=4,
    ∴0≤t≤4;
    (3)
    解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,
    当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,
    ∴3≤b<5,
    由对称性同法可知﹣5<b≤﹣3也满足条件,
    故3≤b<5或﹣5<b≤﹣3.

    【点睛】
    本题主要考查一次函数的知识,弄清新定义是解题的关键.
    2、 (1)k=2;
    (2)7;
    (3)≤m≤3
    【解析】
    【分析】
    (1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
    (2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
    (3)先求得点P的纵坐标,根据题意列不等式组求解即可.
    (1)
    解:令x=0,则y=2;
    ∴B (0,2),
    ∴OB=2,
    ∵AB=;
    ∴OA=1,
    ∴A (-1,0),
    把B (-1,0)代入y=kx+2得:0=-k+2,
    ∴k=2;
    (2)
    解:∵直线l2平行于直线y=−2x.
    ∴设直线l2的解析式为y=−2x+b.
    把(2,2)代入得2=−22+b,
    解得:b=6,
    ∴直线l2的解析式为.
    令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
    由(1)得直线l1的解析式为.
    解方程组得:,
    ∴N (1,4),
    四边形OCNB的面积=S△ODC- S△NBD
    =
    =7;
    (3)
    解:∵点P的横坐标为m,
    ∴点P的纵坐标为,
    ∴PM=,
    ∵PM≤3,且点P在线段CD上,
    ∴≤3,且m≤3.
    解得:≤m≤3.
    【点睛】
    本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
    3、 (1)见解析
    (2)直线l1与l2不相交
    【解析】
    【分析】
    (1)将所给点代入直线中,看等式是否成立,再判断该点是否在直线上;
    (2)求出解析式与比较,发现系数相同,故不可能相交.
    【详解】
    (1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,
    ∴点(﹣2,﹣3)在直线l2上;
    (2)∵直线l1经过原点与点P(m,2m),
    ∴直线l1为y=2x,
    当m=2时,则直线l2:y=2x+1,
    ∵x的系数相同,
    ∴直线l1与l2不相交.
    【点睛】
    本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.
    4、 (1)B(4,0),
    (2)
    (3)(5,7)或(8,3)或(,)
    【解析】
    【分析】
    (1)求出直线AB的解析式,可求点B坐标,由面积法可求解;
    (2)求出点D坐标,由三角形的面积公式可求解;
    (3)先计算当S△ABP=时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.
    (1)
    解:∵直线AB为y=x+b交y轴于点A(0,3),
    ∴b=3,AO=3,
    ∴直线AB解析式为:y=x+3,
    令y=0,则0=x+3,x=4,
    ∴B(4,0),
    ∴OB=4,
    ∴AB==5,
    ∴S△AOB=×OA×OB=×AB×点O到直线AB的距离,
    ∴点O到直线AB的距离==;
    (2)
    ∵点D在直线AB上,
    ∴当x=1时,y=,即点D(1,),
    ∴PD=n-,
    ∵OB=4,
    ∴S△ABP==;
    (3)
    当S△ABP=时,,解得n=4,
    ∴点P(1,4),
    ∵E(1,0),
    ∴PE=4,BE=3,
    第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,
    ∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,
    ∴∠BPE=∠PCN,
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△PEB(AAS),
    ∴PN=EB=3,PE=CN=4,
    ∴NE=NP+PE=3+4=7,
    ∴C(5,7);
    第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.

    同理可证:△CBF≌△BPE(AAS),
    ∴CF=BE=3,BF=PE=4,
    ∴OF=OB+BF=4+4=8,
    ∴C(8,3);
    第3种情况,如图3,当∠PCB=90°,CP=CB时,
    过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,

    同理可证:△PCG≌△CBH(AAS),
    ∴CG=BH,PG=CH,
    ∵PE=4,BE=3,设CG=BH=x,PG=CH=y,
    则PE=GH=x+y=4,BE=PG-BH=y-x=3,
    解得:x=,y=,
    ∴C(,),
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(,).
    【点睛】
    本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.
    5、 (1)y=2x﹣4
    (2)见解析
    (3)x<3
    【解析】
    【分析】
    (1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;
    (2)列表描点连线即可;
    (3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.
    (1)
    解:∵y与x﹣2成正比例,
    ∴设y=k(x﹣2)(k为常数,k≠0),
    把x=1,y=﹣2代入得:﹣2=k(1﹣2),
    解得:k=2,
    即y=k(x﹣2)=2(x﹣2)=2x﹣4,
    所以变量y与x的函数关系式是y=2x﹣4;
    (2)
    列表
    x
    0
    2
    y
    -4
    0
    描点(0,-4),(2,0),
    连线得y=2x﹣4的图象;

    (3)
    从图象可知:A点的坐标是(3,2),把A点的横坐标x=3代入y=2x﹣4时,y=2,
    即点A也在函数y=2x﹣4的图象上,
    即点A是函数y=ax+b和函数y=2x﹣4的交点,
    ∴关于x的不等式ax+b>2x﹣4反应在函数图像函数y=ax+b在函数y=2x﹣4图像上方,交点A的左侧,
    所以关于x的不等式ax+b>2x﹣4的解集是x<3,
    故答案为:x<3.
    【点睛】
    本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.

    相关试卷

    初中第二十一章 一次函数综合与测试同步练习题:

    这是一份初中第二十一章 一次函数综合与测试同步练习题,共24页。试卷主要包含了若点,点A等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共28页。试卷主要包含了下列函数中,属于正比例函数的是,点A等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共31页。试卷主要包含了已知点,若一次函数,一次函数的图象不经过的象限是,,两地相距80km,甲等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map