|课件下载
终身会员
搜索
    上传资料 赚现金
    第11套人教初中数学九上 24.2 点和圆的位置关系课件
    立即下载
    加入资料篮
    第11套人教初中数学九上   24.2 点和圆的位置关系课件01
    第11套人教初中数学九上   24.2 点和圆的位置关系课件02
    第11套人教初中数学九上   24.2 点和圆的位置关系课件03
    第11套人教初中数学九上   24.2 点和圆的位置关系课件04
    第11套人教初中数学九上   24.2 点和圆的位置关系课件05
    第11套人教初中数学九上   24.2 点和圆的位置关系课件06
    第11套人教初中数学九上   24.2 点和圆的位置关系课件07
    第11套人教初中数学九上   24.2 点和圆的位置关系课件08
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册24.2.1 点和圆的位置关系备课ppt课件

    展开
    这是一份初中数学人教版九年级上册24.2.1 点和圆的位置关系备课ppt课件,共28页。PPT课件主要包含了OA<r,OBr,OC>r,d<r,d>r,练一练,想一想等内容,欢迎下载使用。

    爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?
    如图,设⊙O 的半径为r,A点在圆内,B点在圆上,C点在圆外,那么
    点A在⊙O内
    点B在⊙O上
    点C在⊙O外
    OA<r, OB=r, OC>r.
      反过来也成立,如果已知点到圆心的距离和圆的半径的关系,就可以判断点和圆的位置关系。
    设⊙O 的半径为r,点P到圆心的距离OP=d,则有:
    点P在⊙O内
    点P在⊙O上
    点P在⊙O外
    平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。
    圆的内部可以看成是到圆心的距离小于半径的的点的集合;圆的外部可以看成是 。
    到圆心的距离大于半径的点的集合
    思考:平面上的一个圆把平面上的点分成哪几部分?
    例:如图已知矩形ABCD的边AB=3厘米,AD=4厘米
    (1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
    (B在圆上,D在圆外,C在圆外)
    (2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
    (B在圆内,D在圆上,C在圆外)
    (3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
    (B在圆内,D在圆内,C在圆上)
    1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在 ;点B在 ;点C在 。
    2、⊙O的半径6cm,当OP=6时,点P在 ;当OP 时点P在圆内;当OP 时,点P不在圆外。
    3、正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A 。
    4、已知AB为⊙O的直径P为⊙O 上任意一点,则点 P关于AB的对称点P′与⊙O的位置为( ) (A)在⊙O内 (B)在⊙O 外 (C)在⊙O 上 (D)不能确定
    1. A站住教室中央,若要B与A的距离为3m,那么B应站在哪里?有几个位置? 请通过画图来说明.
    B站在以A为圆心,以3m为半径的圆上任意一点即可. 有无数个位置.
    2. A站住教室中央,若要求B与A距离等于3m,B与C距离2m,那么B应站在哪儿?有几个位置?
    3. 现在要求B与A距离3m以外,B与C距离2m以外,那么B应站在哪儿?有几个位置?
    B应站在⊙A和⊙C的圆外 ,有无数个位置.
    1、平面上有一点A,经过已知A点的圆有几个?圆心在哪里?
    无数个,圆心为点A以外任意一点,半径为这点与点A的距离
    2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点?
    以线段AB的垂直平分线上的任意一点为圆心,以这点到A或B的距离为半径作圆.
    无数个。它们的圆心都在线段AB的垂直平分线上。
    3、平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?
    归纳结论: 不在同一条直线上的三个点确定一个圆。
    经过B,C两点的圆的圆心在线段AB的垂直平分线上.
    经过A,B,C三点的圆的圆心应该这两条垂直平分线的交点O的位置.
    经过A,B两点的圆的圆心在线段AB的垂直平分线上.
    不在同一条直线上的三点确定一个圆.
    3.以点O为圆心,OA(或OB、OC)为半径作圆,便可以作出经过A、B、C的圆.
    1.分别连接AB、BC、AC;
    2. 分别作出线段AB的垂直平分线l1和线段BC的垂直平分线l2,设它们的交点为O ,则OA=OB=OC;
    由于过A、B、C三点的圆的圆心只能是点O,半径等于OA,所以这样的圆只能有一个,即
    1、经过三角形三个顶点可以画一个圆,并且只能画一个.
    一个三角形的外接圆有几个?一个圆的内接三角形有几个?
    2、经过三角形三个顶点的圆叫做三角形的 外接圆。
    三角形的外心就是三角形三条边的垂直平分线的交点, 它到三角形三个顶点的距离相等。
    这个三角形叫做这个圆的内接三角形。
    三角形外接圆的圆心叫做这个三角形的外心。
    分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
    锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.
    1、判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆( ).(2)任意一个圆有且只有一个内接三角形( )(3)经过三点一定可以确定一个圆( )(4)三角形的外心到三角形各顶点的距离相等( )
    2、若一个三角形的外心在一边上,则此三角形的 形状为( ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形
    (2)经过同一条直线三个点能作出一个圆吗?
    如图,假设过同一条直线l上三点A、B、C可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾,所以过同一条直线上的三点不能作圆.
    先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.
    经过同一直线的三点不能作出一个圆.
    经过同一直线的三点能作出一个圆.
    过一点有且只有一条直线垂直于已知直线
    过一点有两条直线垂直于已知直线.
    反证法常用于解决用直接证法不易证明或不能证明的命题,主要有:
    (1)命题的结论是否定型的;(2)命题的结论是无限型的;(3)命题的结论是“至多”或“至少”型的.
    画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.
    思考:任意四个点是不是可以作一个圆?请举例说明.
    1. 四点在一条直线上不能作圆;
    3. 四点中任意三点不在一条直线可能作圆也可能作不出一个圆.
    2. 三点在同一直线上, 另一点不在这条直线上不能作圆;
    这节课你学到了哪些知识?有什么感想?
    爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的的安全区域,已知这个导火索的长度为18cm,如果点导火索的人以每秒6.5m的速度撤离,那么是否安全?为什么?
    相关课件

    数学人教版24.2.1 点和圆的位置关系优质课件ppt: 这是一份数学人教版24.2.1 点和圆的位置关系优质课件ppt,共59页。PPT课件主要包含了教学目标,知识与能力,过程与方法,教学重难点,由位置判断距离,由距离判断位置,点和圆的位置关系,无数个,l1⊥l,l2⊥l等内容,欢迎下载使用。

    初中数学人教版九年级上册24.2.1 点和圆的位置关系教课课件ppt: 这是一份初中数学人教版九年级上册24.2.1 点和圆的位置关系教课课件ppt,共25页。PPT课件主要包含了课堂练习等内容,欢迎下载使用。

    数学九年级上册24.2.1 点和圆的位置关系教学课件ppt: 这是一份数学九年级上册24.2.1 点和圆的位置关系教学课件ppt,共23页。PPT课件主要包含了学习目标,情景引入,知识精讲,针对练习,数形结合,位置关系,数量关系,典例解析,达标检测,小结梳理等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map