数学人教版13.3.2 等边三角形示范课ppt课件
展开1.探索含30°角的直角三角形的性质(重点)2.会运用含30°角的直角三角形的性质进行有关的证明和计算.(难点)
问题 如图,将两个相同的含30°角的三角尺摆放在一起,你能借助这个图形,找得到Rt△ABC的直角边BC与斜边AB之间的数量关系吗?
如图,△ADC是△ABC的轴对称图形,
因此AB=AD, ∠BAD=2×30°=60°,
从而△ABD是一个等边三角形.
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
证明:在△ABC 中,∵ ∠C =90°∠A=30°, ∴ ∠B =60°.延长BC 到D,使BD =AB,连接AD,则△ABD 是等边三角形.又∵AC⊥BD,
证明: 在BA上截取BE=BC,连接EC. ∵ ∠B= 60° ,BE=BC. ∴ △BCE是等边三角形, ∴ ∠BEC= 60°,BE=EC. ∵ ∠A= 30°, ∴ ∠ECA=∠BEC-∠A=60°-30° = 30°. ∴ AE=EC, ∴ AE=BE=BC, ∴ AB=AE+BE=2BC.
符号语言:∵ 在Rt△ABC 中, ∠C =90°,∠A =30°,
判断下列说法是否正确:1)直角三角形中30°角所对的直角边等于另一直角边的一半. 2)三角形中30°角所对的边等于最长边的一半。 3)直角三角形中较短的直角边是斜边的一半。 4)直角三角形的斜边是30°角所对直角边的2倍.
例1 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是( )A.3cm B.6cm C.9cm D.12cm
注意:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.
解析:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB 的长度是12cm.故选D.
例2 如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=3,则PD等于( )A.3 B.2 C.1.5 D.1
解析:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠CPO,∴∠PCE=∠BOP+∠CPO=∠BOP+∠AOP=∠AOB=30°.又∵PC=3,∴PE=1.5.∵∠AOP=∠BOP,PD⊥OA,∴PD=PE=1.5.故选C.
方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.
如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC,DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?
想一想: 图中BC、DE 分别是哪个直角三角形的直角边?它们所对的锐角分别是多少度?
解:∵DE⊥AC,BC ⊥AC, ∠A=30 °,
答:立柱BC的长是3.7m,DE的长是1.85m.
2020-2021学年第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形图文课件ppt: 这是一份2020-2021学年第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形图文课件ppt,共31页。PPT课件主要包含了探究性质二,等边三角形的性质,思考题,推论2等内容,欢迎下载使用。
初中数学人教版八年级上册第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形教学课件ppt: 这是一份初中数学人教版八年级上册第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形教学课件ppt,共16页。
数学八年级上册13.3.2 等边三角形图文ppt课件: 这是一份数学八年级上册13.3.2 等边三角形图文ppt课件,共20页。PPT课件主要包含了BC10cm,量一量,AB20cm,还有其他的方法吗,你能得出什么结论呢,符号语言表示,∵D是AB的中点,∵CD⊥AB,∴∠CDB90°,∴∠130°等内容,欢迎下载使用。