![13.3等腰三角形证明题同步达标训练 2021-2022年人教版八年级上册数学(word版含答案)01](http://img-preview.51jiaoxi.com/2/3/12243204/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![13.3等腰三角形证明题同步达标训练 2021-2022年人教版八年级上册数学(word版含答案)02](http://img-preview.51jiaoxi.com/2/3/12243204/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![13.3等腰三角形证明题同步达标训练 2021-2022年人教版八年级上册数学(word版含答案)03](http://img-preview.51jiaoxi.com/2/3/12243204/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学13.3.1 等腰三角形优秀当堂达标检测题
展开八年级上册数学13.3等腰三角形证明题同步达标训练
1.在同一平面内,将两块正三角形的纸板的两个顶点重合在一起.
(1)如图1重叠部分∠AOD=30°,求∠COB的大小;
(2)如图2重叠部分∠AOD=15°,求∠COB的大小;
(3)如图3,若两图形除O外没有重叠,∠AOD=10°,求∠COB的大小;
(4)求∠AOD和∠COB的数量关系.
2.如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.
(1)求证:CF∥AB;
(2)若∠DAC=40°,求∠DFC的度数.
3.如图,在△ABC中,AB=AC,DE垂直平分AB.
(1)若AB=AC=10cm,BC=6cm,求△BCE的周长;
(2)若∠A=40°,求∠EBC的度数.
4.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,求∠MNA的度数.
(2)连接NB,若AB=8cm,△NBC的周长是14cm.求BC的长.
5.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,
(1)求∠F的度数;
(2)若CD=5,求DF的长.
6.在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE.求∠CDE的度数.
7.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.
(1)求∠E的度数.
(2)求证:M是BE的中点.
8.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.
(1)求证:AD=BE;
(2)求AD的长.
9.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
10.在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.
(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;
(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.
11.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.
(1)求证:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度数.
12.如图所示,在△ABC中,MN⊥AC,垂足为N,且MN平分∠AMC,△ABM的周长为9cm,AN=2cm,求△ABC的周长.
13.如图所示,△ABC中,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
14.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.
(1)若∠BAD=45°,求证:△ACD为等腰三角形;
(2)若△ACD为直角三角形,求∠BAD的度数.
15.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.
16.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.
17.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.
求证:DE+DF=BG.
18.如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC,点F为BC中点.
求证:AF⊥BC.
19.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.
20.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.
求证:△DEF是等边三角形.
21.如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.
22.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点
(1)求证:CD=BE;
(2)若DE⊥AC,求BP的长.
23.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)求证:PD=DQ;
(2)若△ABC的边长为1,求DE的长.
参考答案
1.解:(1)∵△COD和△AOB为正三角形,∠AOD=30°,
∴∠COB=∠COD+∠AOB﹣∠AOD
=60°+60°﹣30°
=90°;
(2)∵△COD和△AOB为正三角形,∠AOD=15°,
∴∠COB=∠COD+∠AOB﹣∠AOD
=60°+60°﹣15°
=105°;
(3)∵△COD和△AOB为正三角形,∠AOD=10°,
∴∠COB=∠COD+∠AOB+∠AOD
=60°+60°+10°
=130°;
(4)当∠AOD是两个角的重叠的角,则∠COB=120°﹣∠AOD;
当∠AOD是两个角的相离时的角,且∠AOD≤60°,则∠COB=120°+∠AOD;
当∠AOD是两个角的相离时的角,且∠AOD>60°,则∠COB=360°﹣(120°+∠AOD)=240°﹣∠AOD.
2.(1)证明:∵AC=BC,
∴∠ABC=∠CAB,
∴∠ACE=∠ABC+∠CAB=2∠ABC
∵CF是∠ACE的平分线,
∴∠ACE=2∠FCE
∴2∠ABC=2∠FCE,
∴∠ABC=∠FCE,
∴CF∥AB;
(2)∵CF是∠ACE的平分线,
∴∠ACE=2∠FCE=∠ADC+∠DAC
∵DF平分∠ADC,
∴∠ADC=2∠FDC;
∴2∠FCE=∠ADC+∠DAC=2∠FDC+∠DAC,
∴2∠FCE﹣2∠FDC=∠DAC
∵∠DFC=∠FCE﹣∠FDC
∴2∠DFC=2∠FCE﹣2∠FDC=∠DAC=40°
∴∠DFC=20°.
3.解:(1)∵DE垂直平分AB
∴EA=EB,
∴△BCE的周长=BC+BE+CE=BC+EA+CE=BC+AC=16(cm);
(2)∵AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵EA=EB,
∴∠EBA=∠A=40°,
∴∠EBC=∠ABC﹣∠ABE=30°.
4.(1)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=40°,
∵MN是AB的垂直平分线,
∴AN=BN,
∴∠ABN=∠A=40°,
∴∠ANB=100°,
∴∠MNA=50°;
(2)①∵AN=BN,
∴BN+CN=AN+CN=AC,
∵AB=AC=8cm,
∴BN+CN=8cm,
∵△NBC的周长是14cm.
∴BC=14﹣8=6cm.
5.解:(1)∵△ABC是等边三角形,
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等边三角形.
∴ED=DC=5,
∵∠DEF=90°,∠F=30°,
∴DF=2DE=10.
6.解:∵AB=AC,AD⊥BC,
∴∠CAD=∠BAD=40°,
∠ADC=90°,
又∵AD=AE,
∴∠ADE==70°,
∴∠CDE=90°﹣70°=20°.
7.(1)解:∵三角形ABC是等边△ABC,
∴∠ACB=∠ABC=60°,
又∵CE=CD,
∴∠E=∠CDE,
又∵∠ACB=∠E+∠CDE,
∴∠E=∠ACB=30°;
(2)证明:连接BD,
∵等边△ABC中,D是AC的中点,
∴∠DBC=∠ABC=×60°=30°
由(1)知∠E=30°
∴∠DBC=∠E=30°
∴DB=DE
又∵DM⊥BC
∴M是BE的中点.
8.(1)证明:∵△ABC为等边三角形,
∴AB=CA=BC,∠BAE=∠ACD=60°;
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴AD=BE;
(2)解:∵△ABE≌△CAD,
∴∠CAD=∠ABE,
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,
∴∠PBQ=90°﹣60°=30°,
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6,
又∵PE=1,
∴AD=BE=BP+PE=6+1=7.
9.解:△APQ为等边三角形.
证明:∵△ABC为等边三角形,
∴AB=AC.
在△ABP与△ACQ中,
∵,
∴△ABP≌△ACQ(SAS).
∴AP=AQ,∠BAP=∠CAQ.
∵∠BAC=∠BAP+∠PAC=60°,
∴∠PAQ=∠CAQ+∠PAC=60°,
∴△APQ是等边三角形.
10.解:(1)∵AD是边BC上的高,
∴∠ADC=90°,
∵AB=AC,
∴AD是∠BAC的角平分线,
∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°;
(2)∠BAD=2∠EDC,
理由:∵AB=AC,AD=AE,
∴∠B=∠C,∠ADE=∠AED,
∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,
∴∠B+∠BAD=∠ADC=∠ADE+∠EDC=∠AED+∠∠EDC=∠C+2∠EDC,
∴∠BAD=2∠EDC.
11.(1)证明:∵AC=BC,
∴∠B=∠BAC,
∵∠ACE=∠B+∠BAC,
∴∠BAC=,
∵CF平分∠ACE,
∴∠ACF=∠ECF=,
∴∠BAC=∠ACF,
∴CF∥AB;
(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,
∴∠ACF=∠ADF,
∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,
又∵∠AGD=∠CGF,
∴∠F=∠CAD=20°.
12.解:∵MN⊥AC,且平分∠AMC,
∴∠MAC=∠MCN,
∴MA=MC,且AN=NC=2cm,
∵△ABM的周长为9cm,
∴AB+AM+BM=9cm,
∴AB+BM+MC=9cm,
即AB+BC=9cm,且AC=2AN=4cm,
∴△ABC的周长为AB+BC+AC=9+4=13cm.
13.解:∵BD是∠ABC的平分线,
∴∠ABD=∠CBD.
∵DE∥BC,交AB于点E,
∴∠CBD=∠BDE
∴∠EBD=∠BDE.
∵∠BDC是△ABD的外角,
∴∠A+∠ABD=∠BDC,
∴∠EBD=∠BDC﹣∠A=95°﹣60°=35°,
∴∠BDE=∠DBE=35°,
∴∠BED=180°﹣∠EBD﹣∠EDB=180°﹣35°﹣35°=110°.
14.(1)证明:∵AB=AC,∠B=30°,
∴∠B=∠C=30°,
∴∠BAC=180°﹣30°﹣30°=120°,
∵∠BAD=45°,
∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,
∴∠ADC=∠CAD,
∴AC=CD,
即△ACD为等腰三角形;
(2)解:有两种情况:①当∠ADC=90°时,
∵∠B=30°,
∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;
②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;
即∠BAD的度数是60°或30°.
15.解:∵AB=AC,AD是△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,
∵AE是∠BAD的角平分线,
∴∠DAE=∠EAB=∠BAD=×60°=30°,
∵DF∥AB,
∴∠F=∠BAE=30°,
∴∠DAE=∠F=30°,
∴AD=DF,
∵∠B=90°﹣60°=30°,
∴AD=AB=×9=4.5,
∴DF=4.5.
16.证明:延长BD至F,使DF=BC,连接EF,
∵EC=ED,
∴∠ECD=∠EDC,
∴∠ECB=∠EDF,
∴△ECB≌△EDF(SAS),
∴BE=EF,∠B=60°,
∴△BEF为等边三角形,
∴BE=BF,
∵AE=BD,
∴DF=AB,BC=DF,
∴AB=BC,
∴△ABC是等边三角形.
17.证明:连接AD.
则△ABC的面积=△ABD的面积+△ACD的面积,
AB•DE+AC•DF=AC•BG,
∵AB=AC,
∴DE+DF=BG.
18.证明:∵AD∥BC,
∴∠EAD=∠B,∠DAC=∠C,
∵AD平分∠EAC,
∴∠EAD=∠DAC,
∴∠B=∠C,
∴AB=AC,
∵点F为BC中点,
∴AF⊥BC.
19.证明:∵AB=AC,
∴∠ABC=∠SCB,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB=∠E+∠CDE=2∠DBC,
∴∠DBC=∠E,
∴△BDE为等腰三角形,BD=ED,
∵DH垂直于BE,
∴H为BE中点(三线合一).
20.证明:∵△ABC是等边三角形,
∴AB=BC=AC,
∵AD=BE=CF,
∴AF=BD,
在△ADF和△BED中,
,
∴△ADF≌△BED(SAS),
∴DF=DE,
同理DE=EF,
∴DE=DF=EF.
∴△DEF是等边三角形.
21.证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,
∴∠ACB=∠ECD=60°,
∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE,
∴AD=BE,AM=BN;
∴AC=BC,∠CAD=∠CBE,AM=BN,
∴△AMC≌△BNC(SAS),
∴CM=CN,∠ACM=∠BCN;
又∵∠NCM=∠BCN﹣∠BCM,
∠ACB=∠ACM﹣∠BCM,
∴∠NCM=∠ACB=60°,
∴△CMN是等边三角形.
22.(1)证明:作DF∥AB交BC于F,如图所示:
∵△ABC是等边三角形,
∴∠A=∠ABC=∠C=60°,
∵DF∥AB,
∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠DFP=∠EBP,
∴△CDF是等边三角形,
∴CD=DF,
∵点P为DE中点,
∴PD=PE,
在△PDF和△PEB中,,
∴△PDF≌△PEB(AAS),
∴DF=BE,
∴CD=BE;
(2)解:∵DE⊥AC,
∴∠ADE=90°,
∴∠E=90°﹣∠A=30°,
∴AD=AE,∠BPE=∠ACB﹣∠E=30°=∠E,
∴BP=BE,
由(1)得:CD=BE,
∴BP=BE=CD,
设BP=x,则BE=CD=x,AD=12﹣x,
∵AE=2AD,
∴12+x=2(12﹣x),
解得:x=4,
即BP的长为4.
23.(1)证明:
如图,
过P做PF∥BC交AC于点F,
∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD
∵△ABC为等边三角形,
∴∠A=∠ACB=60°,
∴∠A=∠AFP=60°,
∴△APF是等边三角形;
∵AP=PF,AP=CQ,
∴PF=CQ
∴△PFD≌△QCD,
∴PD=DQ.
(2)△APF是等边三角形,
∵PE⊥AC,
∴AE=EF,
△PFD≌△QCD,
∴CD=DF,
DE=EF+DF=AC,
∵AC=1,
DE=.
人教版13.3.1 等腰三角形巩固练习: 这是一份人教版13.3.1 等腰三角形巩固练习,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2020-2021学年第十三章 轴对称13.3 等腰三角形13.3.1 等腰三角形习题: 这是一份2020-2021学年第十三章 轴对称13.3 等腰三角形13.3.1 等腰三角形习题,共5页。试卷主要包含了3)等内容,欢迎下载使用。
2021学年13.3.1 等腰三角形精品练习题: 这是一份2021学年13.3.1 等腰三角形精品练习题,共8页。试卷主要包含了3《等腰三角形》同步练习卷,下列语句中,正确的是,给出下列三角形等内容,欢迎下载使用。