高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系导学案
展开8.4.2 空间点、直线、平面之间的位置关系
学 习 目 标 | 核 心 素 养 |
1.了解空间中两条直线的三种位置关系,理解两异面直线的定义,会用平面衬托来画异面直线.(重点、难点) 2.了解直线与平面的三种位置关系,并会用图形语言和符号语言表示.(重点、易错点) 3.了解不重合的两个平面之间的两种位置关系,并会用图形语言和符号语言表示.(难点) | 1.通过空间中两条直线的位置关系的学习,培养直观想象的核心素养. 2.借助直线与平面的位置关系、平面与平面的位置关系的学习,提升逻辑推理的核心素养. |
1.异面直线
(1)定义:不同在任何一个平面内的两条直线.
(2)异面直线的画法:
① ②
2.空间两条直线的位置关系
位置关系 | 特点 |
相交 | 同一平面内,有且只有一个公共点 |
平行 | 同一平面内,没有公共点 |
异面直线 | 不同在任何一个平面内,没有公共点 |
思考:分别在两个平面内的两条直线一定是异面直线吗?
[提示] 不一定.可能平行、相交或异面.
3.直线与平面的位置关系
位置关系 | 直线a在平面α内 | 直线a在平面α外 | |
直线a与平面α相交 | 直线a与平面α平行 | ||
公共点 | 无数个公共点 | 一个公共点 | 没有公共点 |
符号表示 | a⊂α | a∩α=A | a∥α |
图形表示 |
思考:“直线与平面不相交”与“直线与平面没有公共点”是一回事吗?
[提示] 不是.前者包括直线与平面平行及直线在平面内这两种情况,而后者仅指直线与平面平行.
4.两个平面的位置关系
位置关系 | 两平面平行 | 两平面相交 |
公共点 | 没有公共点 | 有无数个公共点(在一条直线上) |
符号表示 | α∥β | α∩β=l |
图形表示 |
1.不平行的两条直线的位置关系是( )
A.相交 B.异面
C.平行 D.相交或异面
D [由于空间两条直线的位置关系是平行、相交、异面,则不平行的两条直线的位置关系是相交或异面.]
2.直线a在平面γ外,则( )
A.a∥γ
B.a与γ至少有一个公共点
C.a∩γ=A
D.a与γ至多有一个公共点
D [直线a在平面γ外,则直线a与平面γ平行或相交,因此直线a与γ至多有一个公共点.]
3.若M∈平面α,M∈平面β,则α与β的位置关系是( )
A.平行 B.相交
C.异面 D.不确定
B [∵M∈平面α,M∈平面β,
∴α与β相交于过点M的一条直线.]
4.平面α∥平面β,直线a⊂α,则a与β的位置关系是 .
[答案] 平行
空间中两条直线的位置关系 |
【例1】 如图,已知正方体ABCDA1B1C1D1,判断下列直线的位置关系:
①直线A1B与直线D1C的位置关系是 ;
②直线A1B与直线B1C的位置关系是 ;
③直线D1D与直线D1C的位置关系是 ;
④直线AB与直线B1C的位置关系是 .
[思路探究]
①平行 ②异面 ③相交 ④异面 [根据题目条件知道直线D1D与直线D1C相交于D1点,所以③应该填“相交”;直线A1B与直线D1C在平面A1BCD1中,且没有交点,则两直线“平行”.所以①应该填“平行”;点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C“异面”.同理,直线AB与直线B1C“异面”.所以②④都应该填“异面”.]
1.判定两条直线平行或相交的方法
判定两条直线平行或相交可用平面几何的方法去判断.
2.判定两条直线是异面直线的方法
(1)定义法:由定义判断两直线不可能在同一平面内.
(2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是异面直线(如图).
1.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( )
A.平行 B.异面
C.相交 D.以上均有可能
B [假设BE与CF是共面直线,设此平面为α,则E,F,B,C∈α,所以BF,CE⊂α,而A∈CE,D∈BF,所以A,D∈α,即有A,B,C,D∈α,与ABCD为空间四边形矛盾,所以BE与CF是异面直线.]
空间中直线与平面的位置关系 |
【例2】 (1)若直线上有一点在平面外,则下列结论正确的是( )
A.直线上所有的点都在平面外
B.直线上有无数多个点都在平面外
C.直线上有无数多个点都在平面内
D.直线上至少有一个点在平面内
(2)下列说法中,正确的个数是( )
①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;
②经过两条异面直线中的一条直线,有一个平面与另一条直线平行;
③两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.
A.0 B.1 C.2 D.3
(1)B (2)C [(1)直线上有一点在平面外,则直线不在平面内,故直线上有无数多个点在平面外.
(2)易知①正确,②正确.③中两条相交直线中一条与平面平行,另一条可能平行于平面,也可能与平面相交,故③错误.选C.]
直线与平面位置关系的判断
(1)空间直线与平面位置关系的分类是解决问题的突破口,这类判断问题,常用分类讨论的方法解决.另外,借助模型(如正方体、长方体等)也是解决这类问题的有效方法.
(2)要证明直线在平面内,只要证明直线上两点在平面α内,要证明直线与平面相交,只需说明直线与平面只有一个公共点,要证明直线与平面平行,则必须说明直线与平面没有公共点.
2.已知两平面α,β平行,且a⊂α,下列四个命题:
①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β无公共点.其中正确命题的个数是( )
A.1 B.2 C.3 D.0
B [①中a不能与β内的所有直线平行而是与无数条直线平行,有一些是异面直线;②正确;③根据定义a与β无公共点,正确.]
平面与平面位置关系的判定 |
[探究问题]
1.若一个平面内的任意一条直线都与另一个平面平行,那么这两个平面之间有什么位置关系?
[提示] 因为一个平面内任意一条直线都与另一个平面平行,所以该平面与另一平面没有公共点,根据两平面平行的定义知,这两个平面平行.
2.平面α内有无数条直线与平面β平行,那么α∥β是否正确?
[提示] 不正确.如图,设α∩β=l,则在平面α内与l平行的直线可以有无数条a1,a2,…,an,它们是一组平行线,这时a1,a2,…,an与平面β都平行,但此时α不平行于β,而α∩β=l.
【例3】 (1)如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是( )
A.平行 B.相交
C.平行或相交 D.不能确定
(2)完成下列作图:
①在图中画出一个平面与两个平行平面相交.
②在图中分别画出三个两两相交的平面.
(1)C [逆向考虑画两平行面,看是否能在此两面内画两条平行线.同样画两相交面,看是否能在此两面内画两条平行线,再作出选择(如图所示).
]
(2)[解] ①如图所示,
②如图所示,
1.平面与平面的位置关系的判断方法:
(1)平面与平面相交的判断,主要是以基本事实3为依据找出一个交点.
(2)平面与平面平行的判断,主要是说明两个平面没有公共点.
2.常见的平面和平面平行的模型
(1)棱柱、棱台、圆柱、圆台的上下底面平行;
(2)长方体的六个面中,三组相对面平行.
3.三个平面最多能把空间分为 部分,最少能把空间分成 部分.
8 4 [三个平面可将空间分成4,6,7,8部分,所以三个平面最少可将空间分成4部分,最多分成8部分.]
4. 试画出相交于一点的三个平面.
[解] 如图所示(不唯一).
1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.
2.空间中直线与平面的位置关系有两种分类方式
3.判断直线与平面及平面与平面位置关系的常用方法
(1)定义法:借助线面、面面位置关系的定义判断;
(2)模型法:借助长方体等熟悉的几何图形进行判断,有时起到事半功倍的效果;
(3)反证法:反设结论进行推导,得出矛盾,达到准确的判断位置关系的目的.
1.判断正误
(1)在空间中,直线不平行就意味着相交.( )
(2)直线在平面外是指直线与平面没有交点.( )
(3)两个平面相交的时候,一定交于一条直线.( )
[答案] (1)× (2)× (3)√
2.圆柱的两个底面的位置关系是( )
A.相交 B.平行
C.平行或异面 D.相交或异面
B [圆柱的两个底面无公共点,则它们平行.]
3.下列命题:
①两个平面有无数个公共点,则这两个平面重合;
②若l,m是异面直线,l∥α,m∥β,则α∥β.
其中错误命题的序号为 .
①② [①中两个平面也可能相交;②α与β可能平行也可能相交.]
4.如图,在正方体ABCDA1B1C1D1中,分别指出直线B1C,D1B与正方体六个面所在平面的关系.
[解] 根据图形,直线B1C⊂平面B1C,直线B1C∥平面A1D,与其余四个面相交,直线D1B与正方体六个面均相交.
人教A版 (2019)8.4 空间点、直线、平面之间的位置关系导学案: 这是一份人教A版 (2019)8.4 空间点、直线、平面之间的位置关系导学案,共7页。学案主要包含了教学目标,自主学习,课内探究,当堂检测等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系学案设计: 这是一份高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系学案设计,共4页。
高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系导学案及答案: 这是一份高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系导学案及答案,文件包含842空间点直线平面之间的位置关系导学案原卷版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx、842空间点直线平面之间的位置关系导学案答案版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx等2份学案配套教学资源,其中学案共13页, 欢迎下载使用。