![2022届高中数学新人教A版必修第一册 第1章1.3第1课时并集与交集 学案01](http://img-preview.51jiaoxi.com/3/3/12159329/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届高中数学新人教A版必修第一册 第1章1.3第1课时并集与交集 学案02](http://img-preview.51jiaoxi.com/3/3/12159329/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届高中数学新人教A版必修第一册 第1章1.3第1课时并集与交集 学案03](http://img-preview.51jiaoxi.com/3/3/12159329/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学人教A版 (2019)必修 第一册1.3 集合的基本运算第1课时学案设计
展开某班班主任准备召开一个意见征求会,要求所有上一次考试中语文成绩低于70分或英语成绩低于70分的同学参加.如果记语文成绩低于70分的所有同学组成的集合为M,英语成绩低于70分的所有同学组成的集合为N,需要去参加意见征求会的同学组成的集合为P,那么这三个集合之间有什么联系呢?
知识点1 并集
集合A∪B的元素个数是否等于集合A与集合B的元素个数和?
[提示] 不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数和.
对并集中“或”的理解
“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x∉B;x∈B,但x∉A;x∈A,且x∈B.用Venn图表示如图所示.
1.(1)设集合M={4,5,6,8},N={3,5,7,8},则M∪N=________.
(2)已知A={x|x>1},B={x|x>0},则A∪B=________.
(1){3,4,5,6,7,8} (2){x|x>0} [(1)M∪N={3,4,5,6,7,8}.(2)A∪B={x|x>0}.]
学校高一年级准备成立一个科学兴趣小组,招募成员时要求同时满足:
(1)中考的物理成绩不低于80分;
(2)中考的数学成绩不低于90分.
如果满足条件(1)的同学组成的集合记为P,满足条件(2)的同学组成的集合记为M,而能成为科学兴趣小组成员的同学组成的集合记为S,那么这三个集合之间有什么联系呢?
知识点2 交集
2.已知表示集合M={-1,0,1}和P={0,1,2,3}关系的Venn图如图所示,则阴影部分表示的集合是________.
{0,1} [由题图可知M∩P={0,1}.]
类型1 并集概念及其应用
【例1】 (对接教材P10例题)(1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=( )
A.{0} B.{0,2}
C.{-2,0}D.{-2,0,2}
(2)已知集合M={x|-3
A.{x|x<-5或x>-3}B.{x|-5
(1)D (2)A [(1)M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N={-2,0,2},故选D.
(2)在数轴上表示集合M,N,如图所示, 则M∪N={x|x<-5或x>-3}.
]
求集合并集的2种基本方法
(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解.
(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.
eq \a\vs4\al([跟进训练])
1.已知集合A={-1,3},B={2,a2},若A∪B={-1,3,2,9},则实数a的值为( )
A.±1B.±3
C.-1D.3
B [∵集合A={-1,3},B={2,a2},A∪B={-1,3,2,9},∴a2=9,解得a=±3,故选B.]
类型2 交集概念及其应用
【例2】 (1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )
A.{x|0≤x≤2}B.{x|1≤x≤2}
C.{x|0≤x≤4}D.{x|1≤x≤4}
(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )
A.5B.4
C.3D.2
(1)A (2)D [(1)∵A={x|-1≤x≤2},B={x|0≤x≤4},如图,
故A∩B={x|0≤x≤2}.
(2)∵8=3×2+2,14=3×4+2,
∴8∈A,14∈A,
∴A∩B={8,14},故选D.]
求两个集合的交集的方法
(1)直接法:对于元素个数有限的集合,逐个挑出两个集合的公共元素即可.
(2)定义法:对于元素个数无限的集合,一般借助数轴求交集,两个集合的交集等于两个集合在数轴上的相应图形所覆盖的公共范围,要注意端点值的取舍.
eq \a\vs4\al([跟进训练])
2.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=( )
A.∅
B.eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x<-\f(1,2)))))
C.eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x>\f(3,5)))))
D.eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(-\f(1,2)
类型3 集合交、并集运算的性质及综合应用
【例3】 已知集合A={x|-3
[解] (1)当B=∅,即k+1>2k-1时,k<2,满足A∪B=A.
(2)当B≠∅时,要使A∪B=A,
只需eq \b\lc\{\rc\ (\a\vs4\al\c1(-3
把本例条件“A∪B=A”改为“A∩B=A”,试求k的取值范围.
[解] 由A∩B=A可知A⊆B.
所以eq \b\lc\{\rc\ (\a\vs4\al\c1(-3≥k+1,,2k-1≥4,))即eq \b\lc\{\rc\ (\a\vs4\al\c1(k≤-4,,k≥\f(5,2),))所以k∈∅.
所以k的取值范围为∅.
利用集合交集、并集的性质解题的方法
(1)在利用集合的交集、并集性质解题时,常常会遇到A∩B=A,A∪B=B等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A∩B=A⇔A⊆B,A∪B=B⇔A⊆B等,解答时应灵活处理.
(2)当集合B⊆A时,如果集合A是一个确定的集合,而集合B不确定,运算时一定要考虑B=∅的情况,切不可漏掉.
eq \a\vs4\al([跟进训练])
3.已知集合A={x|2
(1)若A∪B=B,求a的取值范围;
(2)若A∩B=∅,求a的取值范围;
(3)若A∩B={x|3
观察数轴可知,eq \b\lc\{\rc\ (\a\vs4\al\c1(2≥a,,4≤3a,))所以eq \f(4,3)≤a≤2.
(2)A∩B=∅有两类情况:B在A的左边和B在A的右边,如图.
观察数轴可知,a≥4或3a≤2,又a>0,
所以0(3)画出数轴如图,
观察图形可知eq \b\lc\{\rc\ (\a\vs4\al\c1(a=3,,3a≥4,))即a=3.
1.已知集合A={1,2,3,4},B={2,4,6},则A∪B中元素的个数为( )
A.3 B.4
C.5 D.6
C [由于A∪B表示所有属于A或属于B的元素组成的集合,故A∪B={1,2,3,4,6},共有5个元素.故选C.]
2.已知集合M={-1,0,1},P={0,1,2,3},则图中阴影部分所表示的集合是( )
A.{0,1}B.{0}
C.{-1,2,3}D.{-1,0,1,2,3}
D [由Venn图,可知阴影部分所表示的集合是M∪P.因为M={-1,0,1},P={0,1,2,3},故M∪P={-1,0,1,2,3}.故选D.]
3.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=( )
A.{1}B.{2}
C.{-1,2}D.{1,2,3}
B [∵B={x|(x+1)(x-2)=0,x∈Z}={-1,2},A={1,2,3}∴A∩B={2}.]
4.若集合A={x|-1
5.已知集合A={x|x-a>0},B={x|2-x<0},且A∪B=B,则实数a满足的条件是________.
{a|a≥2} [∵A={x|x>a},B={x|x>2},
又A∪B=B,∴A⊆B.
∴a≥2.]
回顾本节知识,自我完成以下问题:
1.集合A,B的交集和并集的定义分别是什么?
[提示] A∩B={x|x∈A且x∈B},A∪B={x|x∈A或x∈B}.
2.集合A∪B=A可以得出A与B存在怎样的关系?A∩B=A呢?
[提示] A∪B=A⇒B⊆A;A∩B=A⇒A⊆B.
3.A∩∅=∅吗?A∪∅呢?
[提示] A∩∅=∅,A∪∅=A.
学 习 任 务
核 心 素 养
1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(重点、难点)
2.能使用Venn图表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)
1.借助Venn图培养直观想象素养.
2.通过集合并集、交集的运算提升数学运算素养.
苏教版高中数学必修第一册第1章1.3交集、并集学案: 这是一份苏教版高中数学必修第一册第1章1.3交集、并集学案,共10页。
数学第一章 集合与常用逻辑用语1.3 集合的基本运算第1课时导学案及答案: 这是一份数学第一章 集合与常用逻辑用语1.3 集合的基本运算第1课时导学案及答案,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。
数学必修 第一册1.3 交集、并集导学案及答案: 这是一份数学必修 第一册1.3 交集、并集导学案及答案,共4页。学案主要包含了学习目标,学习重难点,学习过程,学习小结,精炼反馈等内容,欢迎下载使用。