高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质优秀导学案
展开1.下列四个函数中,在x∈(0,+∞)上为增函数的是( )
A.f(x)=3-x B.f(x)=x2-3x
C.f(x)=-eq \f(1,x+1) D.f(x)=-|x|
2.给定函数:①y=xeq \f(1,2),②y=lgeq \f(1,2)(x+1),③y=|x-1|,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( )
A.①② B.②③ C.③④ D.①④
【题组二 求单调区间】
1.函数的单调递增区间是 .
2.函数的单调增区间为_________.
3.函数的单调增区间是__________.
4.函数的单调增区间为 .
5.函数的单调增区间为___________.
【题组三 解不等式】
1.已知函数f(x)是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f(2x-1)<feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))的x的取值范围是 。
2.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是(全集为R 。
3.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.
4.设函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2-x,x≤0,,1,x>0,))则满足f(x+1)
【题组五 求参数】
1.已知函数在R上是增函数,则实数的取值范围是________.
2.若函数在区间上是单调减函数,则实数的取值范围是________.
3.若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是____.
4.已知函数在上单调递增,则实数的取值范围__________.
5.已知满足对任意成立,那么的取值范围是_______
6.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-x2-ax-5,x≤1,,\f(a,x),x>1))是R上的增函数,则实数a的取值范围是 。
高中数学3.1 函数的概念及其表示优秀学案: 这是一份高中数学3.1 函数的概念及其表示优秀学案,共3页。学案主要包含了题组一 单调性,题组二 换元法,题组三 分离常数法,题组四 图像法等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第一册3.3 幂函数精品导学案及答案: 这是一份高中数学人教A版 (2019)必修 第一册3.3 幂函数精品导学案及答案,共5页。学案主要包含了题组二 幂函数性质,题组三 图像问题等内容,欢迎下载使用。
高中3.2 函数的基本性质优质学案设计: 这是一份高中3.2 函数的基本性质优质学案设计,共3页。学案主要包含了常见考法等内容,欢迎下载使用。