|课件下载
搜索
    上传资料 赚现金
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修1
    立即下载
    加入资料篮
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修101
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修102
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修103
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修104
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修105
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修106
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修107
    1.2.8二次函数的图像和性质——对称性_课件-湘教版必修108
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学湘教版必修11.2函数的概念和性质教学课件ppt

    展开
    这是一份高中数学湘教版必修11.2函数的概念和性质教学课件ppt,共29页。PPT课件主要包含了自学导引,F-x=Fx,x00,ax2+bx+c=0,x1x2,自主探究,预习测评,答案-1,答案6,名师点睛等内容,欢迎下载使用。

    奇、偶函数的定义(1)如果对一切使F(x)有定义的x,F(-x)也有定义,并且____________成立,则称F(x)为偶函数;(2)如果对一切使F(x)有定义的x,F(-x)也有定义,并且______________成立,则称F(x)为奇函数.奇、偶函数的图象特征偶函数的图象是以_____为对称轴的轴对称图形,奇函数的图象是以_____为对称中心的中心对称图形.
    F(-x)=-F(x)
    缺少一次项的二次函数y=ax2+c是偶函数,其图象是以_____为对称轴的轴对称图形.如果函数F(x)有一条平行于y轴的对称轴,对称轴和x轴交点的坐标是(s,0),则对任意的h,有________________反之亦然.
    F(s+h)=F(s-h)
    (3)如Δ>0,图象和x轴交于两点(x1,0)和(x2,0),这里x1<x2,是方程______________的两个不等实根.对应于x∈_______,图象在x轴下方,当x在_______之外时,图象在x轴上方.
    判断函数的奇偶性为什么要判断定义域在x轴上所示的区间是否关于原点对称呢?提示 由定义知,若x是定义域内的一个元素,-x也一定是定义域内的一个元素,所以函数y=f(x)具有奇偶性的一个必不可少的条件是:定义域在x轴上所示的区间关于原点对称.即:如果所给函数的定义域在x轴上所示的区间不是关于原点对称,这个函数一定不具有奇偶性.例如:函数f(x)=x3在R上是奇函数,但在[-2,1]上既不是奇函数也不是偶函数.
    有没有既是奇函数又是偶函数的函数?提示 有.如f(x)=0,x∈(-5,5).
    解析 结合图象知选项为D.答案 D
    二次函数y=-x2-6x+k的图象的顶点在x轴上,则k的值为 (  ).A.-9 B.9 C.3 D.-3解析 ∵y=-(x+3)2+k+9,∴k+9=0,k=-9.答案 A设函数f(x)=(x+1)(x+a)为偶函数,则a=______.
    若函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b=______.
    定义法:若函数的定义域不是关于原点对称的,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断f(-x)=±f(x)之一是否成立.
    判断函数奇偶性的常用方法
    图象法:奇(偶)函数等价于它的图象关于原点(y轴)对称.性质法:利用性质来判断,即利用奇、偶函数的和、差、积、商的奇偶性,以及复合函数的奇偶性来判断.即:(1)在公共定义域内,偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(2)对于复合函数F(x)=f[g(x)]:若g(x)为偶函数,则F(x)为偶函数;若g(x)为奇函数,f(x)为奇函数,则F(x)为奇函数;若g(x)为奇函数,f(x)为偶函数,则F(x)为偶函数.
    警示 在判断函数的奇偶性时,容易忽视函数的定义域是否关于原点对称这一前提条件,从而导致做无用功(即浪费时间和精力,又判断失误而出错).
    已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1.(1)求f(x)的解析式;(2)作出函数f(x)的图象.解 (1)设x<0,由于f(x)是奇函数,故f(x)=-f(-x),又-x>0,由已知有f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.所以-f(-x)=2x2+3x-1.又f(0)=0,
    题型一 函数奇偶性的应用
    点评 利用奇、偶函数图象的对称性,可以画出图象的另一半,从而可以减少工作量.本题容易将f(0)=0遗漏掉.
    即f(-x)=f(x),∴f(x)是偶函数.(3)由题易知函数f(x)的定义域{x|x≠0},关于原点对称,①当x>0时,-x<0,∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x).②当x<0时,-x>0,∴f(-x)=(-x)[1+(-x)]=-x(1-x)=-f(x).∴f(-x)=-f(x),∴f(x)为奇函数.
    点评 (1)判定函数的奇偶性,首先要检验其定义域是否关于原点对称,然后再严格按照奇偶性的定义经过化简、整理,再与f(x)比较得出结论.(2)分段函数的奇偶性应分段证明f(-x)与f(x)的关系,只有当对称的两段上都满足相同的关系时才能判断其奇偶性.
    已知二次函数f(x)同时满足下列条件:①f(1+x)=f(1-x);②f(x)的最大值为15;③f(x)=0的两根的立方和等于17.求f(x)的解析式.
    题型二 二次函数的对称性
    点评 二次函数图象的对称性非常重要,只要知道了对称轴,单调性和最值就非常简单.对称性还可以推广到一般函数:已知函数f(x),则f(x)关于x=a对称的充要条件是f(a+x)=f(a-x),还可以变形为f(x)=f(2a-x).
    已知一个二次函数y=ax2+bx+c,当x=1时,函数有最小值-1,方程ax2+bx+c=0的两根α,β满足α2+β2=4,求这个二次函数的解析式.
    题型三 综合问题
    点评 从本题中可以看出,二次函数与一元二次方程之间有着密切的关系,一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当y=0时的情形.
    不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,求a的取值范围.解 法一 (1)当a=2时,f(x)=-4<0恒成立; (2)当a≠2时,f(x)=(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,f(x)有最大值且最大值为负,即
    由(1)(2)知,a的取值范围是(-2,2].法二 当a=2时,不等式显然成立.当a≠2时,若不等式成立,
    即f(x)=(a-2)x2+2(a-2)x-4<0对x∈R恒成立,必有a-2<0,且Δ=4(a-2)2+4(a-2)×4<0,解得-2 误区警示 判断函数奇偶性时,因忽略定义域而出错
    错因分析 错解中没有判断函数f(x)的定义域是否关于原点对称,而直接应用定义判断奇偶性.
    [正解] 函数f(x)的定义域为{x|-1≤x<1},不关于原点对称,故此函数既不是奇函数又不是偶函数.纠错心得 判断所给函数的奇偶性时,在求出函数的定义域以前,不能化简函数的解析式,否则会导致函数的定义域发生变化,得到错误结论.
    相关课件

    高中数学湘教版必修12.3幂函数教学课件ppt: 这是一份高中数学湘教版必修12.3幂函数教学课件ppt,共28页。PPT课件主要包含了问题引入,练一练,1y4x,观察幂函数图象填表,探究2,探究1,一定义,四应用,幂函数的应用,谢谢指导等内容,欢迎下载使用。

    高中数学湘教版必修12.3幂函数说课课件ppt: 这是一份高中数学湘教版必修12.3幂函数说课课件ppt,共31页。PPT课件主要包含了复习引入,1都是函数,讲授新课,的图象,幂函数的性质,练习判断正误,课堂小结等内容,欢迎下载使用。

    高中数学湘教版必修11.1集合教课内容ppt课件: 这是一份高中数学湘教版必修11.1集合教课内容ppt课件,共20页。PPT课件主要包含了观察下列对象,1定义,全体称为集合,集合的元素,集合元素的性质,重要数集,3Z整数集,4Q有理数集,5R实数集,即非负整数集等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map