|试卷下载
搜索
    上传资料 赚现金
    课时分层作业9 条件概率-【新教材】人教B版(2019)高中数学选择性必修第二册练习
    立即下载
    加入资料篮
    课时分层作业9 条件概率-【新教材】人教B版(2019)高中数学选择性必修第二册练习01
    课时分层作业9 条件概率-【新教材】人教B版(2019)高中数学选择性必修第二册练习02
    课时分层作业9 条件概率-【新教材】人教B版(2019)高中数学选择性必修第二册练习03
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年4.1.1 条件概率课后作业题

    展开
    这是一份2020-2021学年4.1.1 条件概率课后作业题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题
    1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
    A.eq \f(1,8) B.eq \f(1,4) C.eq \f(2,5) D.eq \f(1,2)
    B [∵P(A)=eq \f(C\\al(2,2)+C\\al(2,3),C\\al(2,5))=eq \f(4,10),P(A∩B)=eq \f(C\\al(2,2),C\\al(2,5))=eq \f(1,10),
    ∴P(B|A)=eq \f(PA∩B,PA)=eq \f(1,4).]
    2.下列说法正确的是( )
    A.P(B|A)<P(A∩B)B.P(B|A)=eq \f(PB,PA)是可能的
    C.0<P(B|A)<1D.P(A|A)=0
    B [由条件概率公式P(B|A)=eq \f(PA∩B,PA)及0≤P(A)≤1知P(B|A)≥P(A∩B),故A选项错误;当事件A包含事件B时,有P(A∩B)=P(B),此时P(B|A)=eq \f(PB,PA),故B选项正确;由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.]
    3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
    A.0.8B.0.75
    C.0.6D.0.45
    A [已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=eq \f(0.6,0.75)=0.8.]
    4.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )
    A.0.6B.0.7
    C.0.8D.0.9
    C [设A=“在第一个路口遇到红灯”,B=“在第二个路口遇到红灯”.由题意得,P(A∩B)=0.4,P(A)=0.5,所以P(B|A)=eq \f(PA∩B,PA)=eq \f(0.4,0.5)=0.8.]
    5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是( )
    A.eq \f(1,3) B.eq \f(1,18)
    C.eq \f(1,6) D.eq \f(1,9)
    A [设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)=6×5=30,n(A∩B)=10,
    所以P(A|B)=eq \f(nA∩B,nB)=eq \f(10,30)=eq \f(1,3).]
    二、填空题
    6.高一新生体检中发现:体重超重者占40%,血压异常者占15%,两者都有的占8%,今任选一人进行健康复查,已知此人超重,他血压异常的概率为________.
    0.2 [记事件A表示体重超重,事件B表示血压异常,则P(A)=40%,P(AB)=8%,
    ∴P(B|A)=eq \f(PAB,PA)=eq \f(0.08,0.4)=0.2.]
    7.一个袋子内装有除颜色不同外其余完全相同的3个白球和2个黑球,从中不放回地任取两次,每次取一球,在第一次取到的是白球的条件下,第二次也取到白球的概率是________.
    eq \f(1,2) [记事件A:第一次取得白球.
    事件B:第二次取得白球.
    事件B|A:第一次取到白球的条件下,第二次也取得白球.
    则P(B|A)=eq \f(PA∩B,PA)=eq \f(\f(3×2,5×4),\f(3,5))=eq \f(1,2).]
    8.抛掷骰子2次,每次结果用(x1,x2)表示,其中x1,x2分别表示第一次、第二次骰子的点数.若设A={(x1,x2)|x1+x2=10},B={(x1,x2)|x1>x2},则P(B|A)=________.
    eq \f(1,3) [∵P(A)=eq \f(3,36)=eq \f(1,12),P(A∩B)=eq \f(1,36),
    ∴P(B|A)=eq \f(PA∩B,PA)=eq \f(\f(1,36),\f(1,12))=eq \f(1,3).]
    三、解答题
    9.一个口袋内装有2个白球和2个黑球,那么:
    (1)先摸出1个白球不放回,再摸出1个白球的概率是多少?
    (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?
    [解] (1)设“先摸出1个白球不放回”为事件A,“再摸出1个白球”为事件B,则“先后两次摸出白球”为事件AB,“先摸一球不放回,再摸一球”共有4×3种结果,所以P(A)=eq \f(1,2),P(A∩B)=eq \f(2×1,4×3)=eq \f(1,6),所以P(B|A)=eq \f(\f(1,6),\f(1,2))=eq \f(1,3).所以先摸出1个白球不放回,再摸出1个白球的概率为eq \f(1,3).
    (2)设“先摸出1个白球放回”为事件A1,“再摸出1个白球”为事件B1,“两次都摸出白球”为事件A1B1,
    P(A1)=eq \f(1,2),P(A1∩B1)=eq \f(2×2,4×4)=eq \f(1,4),所以P(B1|A1)=eq \f(PA1∩B1,PA1)=eq \f(\f(1,4),\f(1,2))=eq \f(1,2).所以先摸出1个白球后放回,再摸出1个白球的概率为eq \f(1,2).
    10.集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.
    [解] 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个,在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P=eq \f(9,15)=eq \f(3,5).
    11.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( )
    A.eq \f(1,4) B.eq \f(1,5) C.eq \f(1,6) D.eq \f(1,7)
    C [记“甲站在中间”为事件A,“乙站在末尾”为事件B,
    则n(A)=Aeq \\al(6,6), n(AB)=Aeq \\al(5,5),所以P(B|A)=eq \f(A\\al(5,5),A\\al(6,6))=eq \f(1,6).]
    12.(多选题)将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则( )
    A.P(B|A)=eq \f(91,216)B.P(A|B)=eq \f(5,18)
    C.P(A|B)=eq \f(60,91) D.P(B|A)=eq \f(1,2)
    CD [事件A发生的基本事件个数是n(A)=6×5×4=120,事件B发生的基本事件个数是n(B)=6×6×6-5×5×5=91,事件A,B同时发生的基本事件个数为n(A∩B)=3×5×4=60.
    所以P(A|B)=eq \f(nA∩B,nB)=eq \f(60,91),P(B|A)=eq \f(nA∩B,nA)=eq \f(60,120)=eq \f(1,2).故选CD.]
    13.(一题两空)如图,四边形EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子(体积忽略不计)随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
    P(A)=________;P(B|A)=________.
    eq \b\lc\ \rc\ (\a\vs4\al\c1(\f(2,π))) eq \f(1,4) [根据几何概型的概率计算公式得P(A)=eq \f(2,π).
    根据条件概率计算公式得P(B|A)=eq \f(PA∩B,PA)=eq \f(\f(2,π)×\f(1,4),\f(2,π))=eq \f(1,4).]
    14.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是________.
    eq \f(3,5) [设男生甲被选中为事件A,男生乙和女生丙至少一个被选中为事件B,
    则P(A)=eq \f(C\\al(2,6),C\\al(3,7))=eq \f(15,C\\al(3,7)),
    P(AB)=eq \f(C\\al(1,4)+C\\al(1,4)+1,C\\al(3,7))=eq \f(9,C\\al(3,7)),
    ∴P(B|A)=eq \f(PAB,PA)=eq \f(3,5).]
    15.在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.
    [解] 设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另1道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知
    P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=eq \f(C\\al(6,10),C\\al(6,20))+eq \f(C\\al(5,10)C\\al(1,10),C\\al(6,20))+eq \f(C\\al(4,10)C\\al(2,10),C\\al(6,20))=eq \f(12 180,C\\al(6,20)),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=eq \f(PA,PD)+eq \f(PB,PD)=eq \f(\f(210,C\\al(6,20)),\f(12 180,C\\al(6,20)))+eq \f(\f(2 520,C\\al(6,20)),\f(12 180,C\\al(6,20)))=eq \f(13,58),即所求概率为eq \f(13,58).
    相关试卷

    高中数学4.1.1 条件概率课堂检测: 这是一份高中数学4.1.1 条件概率课堂检测,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学人教B版 (2019)选择性必修 第二册4.2.5 正态分布练习: 这是一份高中数学人教B版 (2019)选择性必修 第二册4.2.5 正态分布练习,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教B版 (2019)选择性必修 第二册4.1.2 乘法公式与全概率公式同步达标检测题: 这是一份人教B版 (2019)选择性必修 第二册4.1.2 乘法公式与全概率公式同步达标检测题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map