2021学年21.2.4 一元二次方程的根与系数的关系集体备课课件ppt
展开1.探索一元二次方程的根与系数的关系.(难点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点)
1.一元二次方程的求根公式是什么?
2.方程的两根x1和x2与系数a,b,c还有其它关系吗?
算一算 解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.
(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?
重要发现如果方程x2+px+q=0的两根是x1,x2,那么x1+x2= -p ,x1 ·x2=q.
(x-x1)(x-x2)=0.
x2-(x1+x2)x+x1·x2=0,
x1+x2= -p ,x1 ·x2=q.
(2)如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?
一元二次方程的根与系数的关系 (韦达定理)
如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么
满足上述关系的前提条件
1. x2-2x-15=0;
例1 口答下列方程的两根之和与两根之积.
2. x2-6x+4=0;
3. 2x2+3x-5=0;
4. 3x2-7x=0;
x1+x2=2,x1 ·x2=-15.
x1+x2=6,x1 ·x2=4.
ax2+bx+c=0(a≠0)
下列方程的两根和与两根积各是多少? ⑴ x2-3x+1=0 ; ⑵ 3x2-2x=2; ⑶ 2x2+3x=0; ⑷ 3x2=1 .
在使用根与系数的关系时:(1)不是一般式的要先化成一般式;(2) 在使用x1+x2=- 时,“- ”不要漏写.
例2 已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.
已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.
例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.
解:根据根与系数的关系可知:
设x1,x2为方程x2-4x+1=0的两个根,则:(1)x1+x2= , (2)x1·x2= , (3) ,(4) .
求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.
1.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m =____.
2.已知一元二次方程x2+px+q=0的两根分别为-2 和 1 ,则:p = , q= .
3.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4; (1)求k的值; (2)求(x1-x2)2的值.
解:(1)根据根与系数的关系 所以(x1+1)(x2+1)=x1x2+(x1+x2)+1= 解得:k=-7;
(2)因为k=-7,所以 则:
人教版九年级上册21.2.4 一元二次方程的根与系数的关系获奖ppt课件: 这是一份人教版九年级上册21.2.4 一元二次方程的根与系数的关系获奖ppt课件,共41页。PPT课件主要包含了想一想等内容,欢迎下载使用。
初中数学人教版九年级上册22.3 实际问题与二次函数公开课ppt课件: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数公开课ppt课件,共4页。
初中数学第二十一章 一元二次方程21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系授课课件ppt: 这是一份初中数学第二十一章 一元二次方程21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系授课课件ppt,共24页。PPT课件主要包含了导入新课,情景引入,复习引入,将二次项系数化为1,x1·x2,讲授新课,猜一猜,证一证,归纳总结,练一练等内容,欢迎下载使用。