初中数学北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定优秀课件ppt
展开1.由对角线关系判定矩形2.由直角的个数判定矩形(重点)
1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?
如图是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.
(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此 你能得到一个怎样的猜想?
知识点1 由对角线关系判定矩形
甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们利用自己所学的几何知识帮助检测一个窗框ABCD是不是矩形,他们各自做了检测.你认为他们的方法对吗?
例1 如图,在 ABCD中,对角线AC与BD相交于点O, △ABO是等边三角形,AB=4,求 ABCD是矩形.
解:∵四边形ABCD是平行四边形, ∴OA=OC,OB=OD. 又∵△ABO是等边三角形, ∴OA=OB=AB=4,∠BAC=60°. ∴OA=OB=OC=OD=4. ∴AC=BD=2OA=2×4=8. ∴ABCD是矩形(对角线相等的平行四边形是矩形).
如图,在▱ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB,请你添加一个条件________,使四边形DBCE是矩形.
判定定理:对角线相等的平行四边形是矩形.
下列关于矩形的说法中正确的是( ) A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分
已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是( )A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形
知识点2 由直角的个数判定矩形
我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.
已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.
证明:∵AD平分∠BAC,AN平分∠CAM, ∴∠CAD= ∠BAC,∠CAN= ∠CAM. ∴∠DAE=∠CAD+∠CAN= (∠BAC+∠CAM)= ×180°=90° 在△ABC 中,∵AB=AC,AD为∠BAC的平分线, ∴AD⊥BC.∴∠ADC=90°. 又∵CE⊥AN,∴∠CEA=90°. ∴四边形ADCE是矩形(有三个角是直角的四边形是矩形).
有一个角是直角的平行四边形是矩形.
有三个角是直角的四边形是矩形.
对角线相等的平行四边形是矩形.
1.已知平行四边形ABCD,下列条件不能判定这个平行四边形为矩形的是( )A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD平分∠BAC,则四边形AEDF是菱形B.若BD=CD,则四边形AEDF是菱形C.若AD垂直平分BC,则四边形AEDF是矩形D.若AD⊥BC,则四边形AEDF是矩形
初中数学北师大版九年级上册2 矩形的性质与判定完美版ppt课件: 这是一份初中数学北师大版九年级上册2 矩形的性质与判定完美版ppt课件,文件包含核心素养目标122《矩形的判定》课件pptx、核心素养目标122《矩形的判定》教案docx等2份课件配套教学资源,其中PPT共25页, 欢迎下载使用。
初中数学北师大版九年级上册2 矩形的性质与判定完美版课件ppt: 这是一份初中数学北师大版九年级上册2 矩形的性质与判定完美版课件ppt,文件包含122《矩形的判定》课件PPTpptx、122《矩形的判定》教案docx等2份课件配套教学资源,其中PPT共21页, 欢迎下载使用。
数学九年级上册2 矩形的性质与判定教课内容课件ppt: 这是一份数学九年级上册2 矩形的性质与判定教课内容课件ppt,共8页。