![第十四章小专题(十四) 因式分解 试卷第1页](http://m.enxinlong.com/img-preview/2/3/5881871/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级上册第十四章 整式的乘法与因式分解综合与测试精品当堂检测题
展开这是一份数学八年级上册第十四章 整式的乘法与因式分解综合与测试精品当堂检测题,共3页。试卷主要包含了分解因式等内容,欢迎下载使用。
小专题(十四) 因式分解
类型1 只提不套型
1.分解因式:
(1)3ab2+a2b;
解:原式=ab(3b+a).
(2)2a2-4a;
解:原式=2a(a-2).
(3)m(5-m)+2(m-5);
解:原式=(m-2)(5-m).
(4)5x(x-2y)3-20y(2y-x)3.
解:原式=5(x-2y)3(x+4y).
类型2 只套不提型
2.分解因式:
(1)4x2-25;
解:原式=(2x+5)(2x-5).
(2)a2+4a+4;
解:原式=(a+2)2.
(3)(a+3)2-(a+b)2;
解:原式=(2a+b+3)(3-b).
(4)(x-1)2-6(x-1)+9;
解:原式=(x-4)2.
(5)(a+b)2-4(a+b)+4;
解:原式=(a+b-2)2.
(6)(x2+9)2-36x2;
解:原式=[(x2+9)+6x][(x2+9)-6x]
=(x2+6x+9)(x2-6x+9)
=(x+3)2(x-3)2.
(7)p2-2pq+q2-k2;
解:原式=(p2-2pq+q2)-k2
=(p-q)2-k2
=(p-q+k)(p-q-k).
(8)k2-4p2+12pq-9q2.
解:原式=k2-(4p2-12pq+9q2)
=k2-(2p-3q)2
=(k+2p-3q)(k-2p+3q).
类型3 先提后套型
3.分解因式:
(1)x2y-9y;
解:原式=y(x2-9)=y(x+3)(x-3).
(2)ax3-axy2;
解:原式=ax(x2-y2)
=ax(x+y)(x-y).
(3)3x3-6x2y+3xy2;
解:原式=3x(x2-2xy+y2)
=3x(x-y)2.
(4)-4x3+8x2-4x;
解:原式=-4x(x2-2x+1)
=-4x(x-1)2.
(5)-2x2+2x-;
解:原式=-(4x2-4x+1)
=-(2x-1)2.
(6)3m(2x-y)2-3mn2.
解:原式=3m(2x-y+n)(2x-y-n).
类型4 先破后立型(根据实际情況选做)
4.分解因式:
(1)x(x-1)-3x+4;
解:原式=(x-2)2.
(2)(x+y)2-4(x+y-1);
解:原式=(x+y-2)2.
(3)(x-2y)2+8xy;
解:原式=(x+2y)2.
(4)(x+3)(x+5)+x2-25;
解:原式=(x+3)(x+5)+(x+5)(x-5)
=(x+5)(x+3+x-5)
=(x+5)(2x-2)
=2(x+5)(x-1).
(5)(c+b)(c-b)-a(a-2b);
解:原式=c2-b2-a2+2ab
=c2-(a2-2ab+b2)
=c2-(a-b)2
=(c+a-b)(c-a+b).
(6)x(x+1)(x+2)(x+3)+1.
解:原式=x(x+3)(x+1)(x+2)+1
=(x2+3x)(x2+3x+2)+1
=(x2+3x)2+2(x2+3x)+1
=(x2+3x+1)2.
相关试卷
这是一份第十四章+整式的乘法与因式分解+期末单元小练习+++2023--2024学年人教版数学八年级上册,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版八年级上册第十四章 整式的乘法与因式分解综合与测试课时练习,共4页。试卷主要包含了下列运算中,结果正确的是,下列运算中,结果是的式子是,下列计算,正确的是,下列各因式分解正确的是,化简并求值等内容,欢迎下载使用。
这是一份人教版八年级上册第十四章 整式的乘法与因式分解综合与测试练习,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。