- 第10章概率10.1.2事件的关系和运算 课件 课件 36 次下载
- 第10章概率10.1.3古典概型 课件 课件 36 次下载
- 第10章概率10.2事件的相互独立性 课件 课件 34 次下载
- 第10章概率10.3.110.3.2频率的稳定性随机模拟 课件试卷 课件 33 次下载
- 第10章概率章末知识梳理 课件 46 次下载
高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率一等奖课件ppt
展开10.1 随机事件与概率
10.1.4 概率的基本性质
性质1 对任意的事件A,都有__________.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=____,P(∅)=____.性质3 如果事件A和事件B互斥,那么P(A∪B)=_____________.性质4 如果事件A与事件B互为对立事件,那么P(B)=__________,P(A)=__________.性质5 如果A⊆B,那么P(A)_____P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=______________________.
P(A)+P(B)-P(A∩B)
[归纳提升] (1)公式P(A∪B)=P(A)+P(B),只有当A、B两事件互斥时才能使用,如果A、B不互斥,就不能应用这一公式;(2)解决本题的关键是正确理解“A∪B”的意义.
[解析] 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F两两互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
甲、乙、丙、丁四人参加4×100米接力赛,求甲跑第一棒或乙跑第四棒的概率.
[归纳提升] (1)概率的一般加法公式及互斥事件的概率加法公式在限制条件上的区别:在公式P(A∪B)=P(A)+P(B)中,事件A,B是互斥事件;在公式P(A∪B)=P(A)+P(B)-P(A∩B)中,事件A,B可以是互斥事件,也可以不是互斥事件.可借助图形理解.(2)利用概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)求解的关键在于理解两个事件A,B的交事件A∩B的含义,准确求出其概率.
【对点练习】❷ 在对200家公司的最新调查中发现,40%的公司在大力研究广告效果,50%的公司在进行短期销售预测,而30%的公司在从事这两项研究.假设从这200家公司中任选一家,记事件A为“该公司在研究广告效果”,记事件B为“该公司在进行短期销售预测”,求P(A),P(B),P(A∪B).[解析] P(A)=40%=0.4,P(B)=50%=0.5,又已知P(A∩B)=30%=0.3,所以P(A∪B)=P(A)+P(B)-P(A∩B)=0.4+0.5-0.3=0.6.
[归纳提升] 对于较复杂事件的概率在求解时通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求对立事件的概率,进而再求所求事件的概率.
[解析] 记“射击一次命中k环”的事件为Ak(k∈N,k≤10),则事件Ak彼此互斥.(1)记“射击一次命中9环或10环”为事件A,则当A9或A10之一发生时,事件A发生,由互斥事件的概率公式,得P(A)=P(A9)+P(A10).因此命中9环或10环的概率为0.60.(2)方法一:由于事件“射击一次命中不足7环”是“射击一次至少命中7环”的对立事件,故所求的概率为P=1-(0.12+0.18+0.28+0.32)=0.10,因此命中不足7环的概率为0.10.方法二:由题意可知“命中环数不足7环”即“命中环数为6环及以下”,故P=0.10.
忽略概率加法公式的应用前提
[错因分析] 造成错解的原因在于忽略了“事件和”概率公式P(A+B)=P(A)+P(B)的使用前提:事件A,B彼此互斥.此题的两个事件A,B不是互斥事件,如出现的点数为1或3时,事件A,B同时发生,故此题应用性质6.
[误区警示] 在使用公式P(A∪B)=P(A)+P(B)时,一定要注意公式成立的前提,即事件A与事件B互斥.若事件A,B不互斥,则应用公式P(A∪B)=P(A)+P(B)-P(AB).
【对点练习】❹ 甲、乙两人各射击一次,命中率分别为0.8和0.5,两人都命中的概率为0.4,求甲、乙两人至少有一人命中的概率.[解析] 至少有一人命中,可看成“甲命中”和“乙命中”这两个事件的并事件.设事件A为“甲命中”,事件B为“乙命中”,则“甲、乙两人至少有一人命中”为事件A∪B,所以P(A∪B)=P(A)+P(B)-P(A∩B)=0.8+0.5-0.4=0.9.
高中人教A版 (2019)10.1 随机事件与概率示范课ppt课件: 这是一份高中人教A版 (2019)10.1 随机事件与概率示范课ppt课件,共18页。PPT课件主要包含了情境引入,课堂探究,应用举例,归纳总结,课堂练习等内容,欢迎下载使用。
数学必修 第二册10.1 随机事件与概率课文课件ppt: 这是一份数学必修 第二册10.1 随机事件与概率课文课件ppt,共14页。PPT课件主要包含了新课探究,经典例题,配套练习,当堂测试等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率背景图ppt课件: 这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率背景图ppt课件,共26页。