所属成套资源:人教版初中数学八年级下册全册同步练习(含答案)
人教版八年级下册18.2.1 矩形优秀课堂检测
展开这是一份人教版八年级下册18.2.1 矩形优秀课堂检测,共7页。试卷主要包含了2 《矩形的判定》同步练习,5,等内容,欢迎下载使用。
一、选择题
1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
2.检查一个门框是否为矩形,下列方法中正确的是( )
A.测量两条对角线,是否相等
B.测量两条对角线,是否互相平分
C.测量门框的三个角,是否都是直角
D.测量两条对角线,是否互相垂直
3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是( )
A.正方形B.矩形 C.菱形 D.都有可能
4.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是( )
A.2个 B.3个C.4个 D.5个
5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是( )
A.两人都对B.两人都不对
C.甲对,乙不对D.甲不对,乙对)
二、解答题
6.已知,平行四边形ABCD中,AB=5,AD=12,BD=13.求证:平行四边形ABCD是矩形。
7.如图所示,在□ABCD中,E为AD的中点,△CBE是等边三角形,求证:□ABCD是矩形。
8.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形。
9.如图,□ABCD与□ABEF中,BC=BE,∠ABC=∠ABE,求证:四边形EFDC是矩形。
10.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F。
(1)求证:AC=BE;
(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形。
11.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A点出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动。
(1)从运动开始,经过多少时间点P、Q、C、D为边得四边形是平行四边形?
(2)从运动开始,经过多少时间点A、B、Q、P为边得四边形是矩形?
参考答案
一、选择——基础知识运用
1.【答案】C
【解析】∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形,∴A正确;
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,∴B正确;
∵∠B+∠C=180°,
∴AB∥DC,
∵∠A=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴四边形ABCD是菱形,∴C不正确;
∵∠A=∠B=90°,
∴∠A+∠B=180°,
∴AD∥BC,如图所示:
在Rt△ABC和Rt△BAD中,
AC=BD;AB=AB,
∴Rt△ABC≌Rt△BAD(HL),
∴BC=AD,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,∴D正确;
故选:C。
2.【答案】C
【解析】根据“三个角是直角的四边形是矩形”可以得到测量门框的三个角,是否都是直角即可检验该四边形是不是矩形。
故选C。
3.【答案】B
【解析】∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形。
故选:B。
4.【答案】C
【解析】
如图1,∠A=∠B=∠C=∠D=360°÷4=90°,∴①正确;
如图1AD∥BC,∠A=∠B=90°,不能推出∠C和∠D也是90°,如直角梯形,∴②错误;
∵AD=BC,AB=CD,
∴四边形ABCD是平行四边形,
∵∠A=90°,
∴平行四边形ABCD是矩形,∴③正确;
根据对角线相等和有一个角是直角不能推出四边形是平行四边形,即不是矩形,∴④错误;
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∵AC=BD,
∴平行四边形ABCD是矩形,∴⑤正确;
∵AD∥BC,∠A=90°,
∴∠B=90°,
即AB是两平行线AD和BC间的高,
∵CD=AB,
∴CD应也是AD和BC间的高,
∴CD⊥BC,
根据矩形的定义得出四边形是矩形,∴⑥正确;
∴正确的个数是4个,
故选C。
5.【答案】A
【解析】由甲同学的作业可知,CD=AB,AD=BC,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴□ABCD是矩形.
所以甲的作业正确;
由乙同学的作业可知,CM=AM,MD=MB,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴□ABCD是矩形。
所以乙的作业正确;
故选A。
二、解答——知识提高运用
6.【答案】∵AB=5,AD=12,BD=13.
∴AB2+AD2=BD2,
∴∠BAD=90°,
∵四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形;
7.【答案】∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,AB=DC,
∴∠D+∠A=180°,
∵E是AD边的中点,
∴AE=DE,
∵△CBE是等边三角形,
∴BE=CE,
在△ABE和△DCE中,
AB=DC ;AE=DE ;BE=CE,
∴△ABE≌△DCE(SSS),
∴∠A=∠D,
∵∠D+∠A=90°,
∴∠D=∠A=90°,
∵四边形ABCD是平行四边形,
∴□ABCD是矩形。
8.【答案】∵M,N分别是DE,BE的中点,
∴MN是△BDE的中位线,
∴MN∥AB,MN=BD,
同理:PN∥CE,PN=CE,MQ∥CE,MQ=CE,
∴PN=MQ,PN∥MQ,
∴四边形PQMN是平行四边形,
∵∠A=90°,
∴BA⊥CA,
∵MN∥AB,MQ∥AC,
∴MN⊥MQ,
∴∠NMQ=90°,
∴四边形PQMN是矩形。
9.【答案】∵在□ABCD与□ABEF中,AB∥CD,AB=CD,AB∥EF,AB=EF,
∴CD∥EF,CD=EF,
∴四边形EFDC是平行四边形,
∵BC=BE,∠ABC=∠ABE,
∴AB⊥CE,
∴CD⊥CE,
∴∠DCE=90°,
∴四边形EFDC是矩形。
10.【答案】(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵CE=DC,
∴AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴AC=BE;
(2)∵AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴FA=FE,FB=FC,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形。
11.【答案】(1)当PD=CQ时,四边形PQCD为平行四边形,
即24-t=3t,
解得,t=6,
即当t=6s时,四边形PQCD为平行四边形;
(2)根据题意得:AP=tcm,CQ=3tcm,
∵AB=8cm,AD=24cm,BC=26cm,
∴DP=AD-AP=24-t(cm),BQ=26-3t(cm),
∵AD∥BC,∠B=90°,
∴当AP=BQ时,四边形ABQP是矩形,
∴t=26-3t,
解得:t=6.5,
即当t=6.5s时,四边形ABQP是矩形。
相关试卷
这是一份人教版八年级下册18.2.1 矩形第2课时测试题,共3页。试卷主要包含了掌握矩形的判定方法;等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册18.2.1 矩形第2课时练习,共4页。
这是一份人教版八年级下册18.2.1 矩形第2课时课后复习题,共5页。