- 12.2 第1课时 “边边边” 导学案 学案 7 次下载
- 12.2 第2课时 “边角边” 导学案 学案 9 次下载
- 12.2 第4课时 “斜边、直角边” 导学案 学案 7 次下载
- 12.3 第1课时 角平分线的性质 导学案 学案 11 次下载
- 12.3 第2课时 角平分线的判定 导学案 学案 9 次下载
人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定优质第3课时导学案及答案
展开自学课本内容
班级:
学生:
时间:
我的疑惑:
我的自学体会:
12.2 全等三角形的判定
第3课时 “角边角”和“角角边”
学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件
2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等.
重点:已知两角一边的三角形全等探究.
难点:理解,掌握三角形全等的条件:“ASA”“AAS”.
自主学习
一、知识链接
1.能够 的两个三角形叫做全等三角形.
2.判定两个三角形全等方法有哪些?
边边边: 对应相等的两个三角形全等.
边角边: 和它们的 对应相等的两个三角形全等.
二、新知预习
在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探
究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两
种呢?
2.现实情境
一张教学用的三角板硬纸不小心被撕坏了, 如图:你能制作一张与原来同样大小的新道具吗? 能恢复原来三角形的原貌吗?
以①为模板,画一画,能还原吗?
以②为模板,画一画,能还原吗?
以③为模板,画一画,能还原吗?
第③块中,三角形的边角六个元素中,固定不变的元素是_____________.
猜想:两角及夹边对应相等的两个三角形_______.
三、我的疑惑
______________________________________________________________________________________________________________________________________________________
课堂记录与反思
课堂探究
要点探究
探究点1:三角形全等的判定定理3--“角边角”
A
B
C
活动:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?你能得出什么结论?
要点归纳:
相等的两个三角形全等(简称“角边角”或“ASA”).
几何语言:
如图,在△ABC和△DEF中,
∴△ABC≌△DEF.
典例精析
例1:如图,已知:∠ABC=∠DCB,∠ACB= ∠DBC,求证:△ABC≌△DCB.
例2:如图,点D在AB上,点E在AC上,AB=AC, ∠B=∠C,求证:AD=AE.
方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.
针对训练
如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.
探究点2:三角形全等的判定定理3的推论--“角角边”
做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm,你能画出这个三角形吗?
追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?
我的问题与不足
要点归纳: 相等的两个三角形全等(简称“角角边”或“AAS”).
几何语言:
如图,在△ABC和△DEF中,
∴△ABC≌△DEF.
典例精析
例3:在△ABC和△DEF中,∠A=∠D,∠B= ∠E,BC=EF.
求证:△ABC≌△DEF.
例4:如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.
方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.
针对训练
如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )
二、课堂小结
当堂检测
我的问题与不足
1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF ,则下列补充的条件中错误的是( )
A.AC=DF B.BC=EF C.∠A=∠D D.∠C=∠F
2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,
且AC=A′C′,那么这两个三角形( )
A.一定不全等 B.一定全等 C.不一定全等 D.以上都不对
3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的
两个三角形是否全等,并说明理由.
4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件 ,
才能使△ABC≌△DEF (写出一个即可),并说明理由.
5.已知:如图, AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.
拓展提升
6.已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.
试说明AD= A′D′ ,并用一句话说出你的发现.
全等三角形判定定理3
简称
图示
符号语言
有两角及夹边(或一角的对边)对应相等的两个三角形全等
“角边角”(ASA)或“角角边”(AAS)
∴△ABC≌△A1B1C1(ASA).
推论:“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三角形全等.
初中数学人教版八年级上册11.1.1 三角形的边第1课时学案: 这是一份初中数学人教版八年级上册11.1.1 三角形的边第1课时学案,共5页。学案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学七年级下册3 探索三角形全等的条件第2课时导学案及答案: 这是一份数学七年级下册3 探索三角形全等的条件第2课时导学案及答案,共7页。学案主要包含了学习目标,使用说明与学法指导,课前预习,课堂探究,学习小结,课堂检测,巩固作业等内容,欢迎下载使用。
数学人教版12.2 三角形全等的判定第3课时学案设计: 这是一份数学人教版12.2 三角形全等的判定第3课时学案设计,共4页。学案主要包含了学习准备,合作探究,巩固练习,课堂小结,当堂清等内容,欢迎下载使用。