所属成套资源:(人教版)2020高考理科数学一轮复习讲义
2020版高考理科数学(人教版)一轮复习讲义:第九章第七节抛物线
展开
第七节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.❶其中点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程❷和几何性质标准方程y2=2px (p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴x轴y轴焦点F F F F 离心率e=1准线方程x=-x=y=-y=范围x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R开口方向向右向左向上向下焦半径(其中P(x0,y0))|PF|=x0+|PF|=-x0+|PF|=y0+|PF|=-y0+ 若定点F在定直线l上,则动点的轨迹为过点F且垂直于l的一条直线.四种不同抛物线方程的异同点共同点(1)原点都在抛物线上;(2)焦点都在坐标轴上;(3)准线与焦点所在坐标轴垂直,垂足与焦点关于原点对称,它们与原点的距离都等于一次项系数的绝对值的,即=不同点(1)焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2;(2)开口方向与x轴(或y轴)的正半轴相同,即焦点在x轴(或y轴)的正半轴上,方程的右端取正号;开口方向与x轴(或y轴)的负半轴相同,即焦点在x轴(或y轴)的负半轴上,方程的右端取负号. [熟记常用结论]设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=,y1y2=-p2;(2)|AF|=,|BF|=,弦长|AB|=x1+x2+p=(α为弦AB的倾斜角);(3)+=;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.
[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )(2)抛物线y2=4x的焦点到准线的距离是4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.( )答案:(1)× (2)× (3)× (4)×二、选填题1.抛物线y=2x2的焦点坐标是( )A. B.C. D.解析:选C 抛物线的标准方程为x2=y,所以焦点坐标是.2.若点P到点F(0,2)的距离比它到直线y+4=0的距离小2,则P的轨迹方程为( )A.y2=8x B.y2=-8xC.x2=8y D.x2=-8y解析:选C 点P到F(0,2)的距离比它到直线y+4=0的距离小2,因此P到F(0,2)的距离与它到直线y+2=0的距离相等,故P的轨迹是以F为焦点,y=-2为准线的抛物线,所以P的轨迹方程为x2=8y.3.抛物线的顶点在原点,准线方程为x=-2,则抛物线方程是( )A.y2=-8x B.y2=-4xC.y2=8x D.y2=4x解析:选C 由抛物线的顶点在原点,准线方程为x=-2,知p=4,且开口向右,故抛物线方程为y2=8x.4.焦点在直线2x+y+2=0上的抛物线的标准方程为____________________.解析:当焦点在x轴上时,令方程2x+y+2=0中的y=0,得焦点为(-1,0),故抛物线方程为y2=-4x,当焦点在y轴上时,令方程2x+y+2=0中的x=0,得焦点为(0,-2),故抛物线方程为x2=-8y.答案:y2=-4x或x2=-8y5.若抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是________.解析:M到准线的距离等于M到焦点的距离,又准线方程为y=-,设M(x,y),则y+=1,∴y=.答案:考点一 抛物线的定义及应用[师生共研过关][典例精析](1)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为( )A. B.1C. D.2(2)设P是抛物线y2=4x上的一个动点,F是抛物线的焦点.若B(3,2),则|PB|+|PF|的最小值为________.[解析] (1)设P(xP,yP),由题可得抛物线焦点为F(1,0),准线方程为x=-1.又点P到焦点F的距离为2,∴由定义知点P到准线的距离为2.∴xP+1=2,∴xP=1.代入抛物线方程得|yP|=2,∴△OFP的面积为S=·|OF|·|yP|=×1×2=1.(2)如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.[答案] (1)B (2)4 1.(变条件)若将本例(2)中“B(3,2)”改为B(3,4),则|PB|+|PF|的最小值为________.解析:由题意可知点B(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),∴|PB|+|PF|≥|BF|==2,即|PB|+|PF|的最小值为2.答案:22.(变设问)在本例(2)条件下,点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.解析:如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到点F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到点F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为=.答案:[解题技法]与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.[提醒] 注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+或|PF|=|y|+.[过关训练]1.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为________.解析:过点M作准线的垂线,垂足是N,则|MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时M(2,2).答案:(2,2)2.(2019·襄阳测试)已知抛物线y=x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=|NF|,则|MF|=________.解析:如图,过N作准线的垂线NH,垂足为H.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|NM|=|NH|,则∠NMH=45°.在△MFK中,∠FMK=45°,所以|MF|=|FK|.而|FK|=1.所以|MF|=.答案:考点二 抛物线的标准方程与几何性质[师生共研过关][典例精析](1)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为( )A.(-1,0) B.(1,0)C.(0,-1) D.(0,1)(2)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点A(0,2),则C的方程为( )A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x[解析] (1)抛物线y2=2px(p>0)的准线为x=-且过点(-1,1),故-=-1,解得p=2.所以抛物线的焦点坐标为(1,0).(2)由已知得抛物线的焦点F设点M(x0,y0),则=,=.由已知得,·=0,即y-8y0+16=0,因而y0=4,M.由|MF|=5,得 =5.又p>0,解得p=2或p=8.故C的方程为y2=4x或y2=16x.[答案] (1)B (2)C[解题技法]1.求抛物线标准方程的方法(1)定义法:若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可.(2)待定系数法:若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.2.抛物线性质的应用技巧(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.(2)要结合图形分析,灵活运用平面图形的性质简化运算.[过关训练]1.(2019·武汉调研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=6,则此抛物线方程为( )A.y2=9x B.y2=6xC.y2=3x D.y2=x解析:选B 如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由抛物线定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=6,|AC|=6+3a,2|AE|=|AC|,所以6+3a=12,从而得a=2,|FC|=3a=6,所以p=|FG|=|FC|=3,因此抛物线方程为y2=6x.2.(2018·合肥模拟)已知抛物线x2=2py(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是4的等边三角形,则此抛物线的方程为________.解析:△FPM为等边三角形,则|PM|=|PF|,由抛物线的定义得PM垂直于抛物线的准线,设P,则点M.因为焦点F,△FPM是等边三角形,所以解得因此抛物线方程为x2=4y.答案:x2=4y考点三 直线与抛物线的位置关系[师生共研过关][典例精析]设A,B为曲线C:y=上两点,A与B的横坐标之和为2.(1)求直线AB的斜率;(2)设M为曲线C上一点,曲线C在点M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.[解] (1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=2,故直线AB的斜率k===1.(2)由y=,得y′=x.设M(x3,y3),由题设知x3=1,于是M.设直线AB的方程为y=x+m,故线段AB的中点为N(1,1+m),|MN|=.将y=x+m代入y=,得x2-2x-2m=0.由Δ=4+8m>0,得m>-,x1,2=1±.从而|AB|=|x1-x2|=2.由题设知|AB|=2|MN|,即=,解得m=.所以直线AB的方程为y=x+.[解题技法]1.直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组.(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.2.解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.[过关训练]1.(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.解析:设A(x1,y1),B(x2,y2),则∴y-y=4(x1-x2),∴k==.设AB中点为M′(x0,y0),抛物线的焦点为F,分别过点A,B作准线x=-1的垂线,垂足为A′,B′,则|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).∵M′(x0,y0)为AB中点,∴M为A′B′的中点,∴MM′平行于x轴,∴y1+y2=2,∴k=2.答案:22.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8),∴(-8)2=2p×8,∴2p=8,∴抛物线C的方程为y2=8x.(2)直线l2与l1垂直,故可设直线l2:x=y+m,A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.由得y2-8y-8m=0,Δ=64+32m>0,∴m>-2.y1+y2=8,y1y2=-8m,∴x1x2==m2.由题意可知OA⊥OB,即x1x2+y1y2=m2-8m=0,∴m=8或m=0(舍去),∴直线l2:x=y+8,M(8,0).故S△FAB=S△FMB+S△FMA=·|FM|·|y1-y2|=3=24.