所属成套资源:(人教版)2020高考理科数学一轮复习讲义
2020版高考理科数学(人教版)一轮复习讲义:第九章第三节圆的方程
展开第三节圆的方程1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)❶圆心:(a,b),半径:r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)❷圆心:,半径: 如果没给出r>0,则圆的半径为|r|.当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示一个点;当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有意义,不表示任何图形.2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[熟记常用结论](1)二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是(2)以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)确定圆的几何要素是圆心与半径.( )(2)方程(x-a)2+(y-b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )(3)方程x2+y2+4mx-2y=0不一定表示圆.( )(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F>0.( )答案:(1)√ (2)× (3)× (4)√二、选填题1.圆心坐标为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2解析:选D 由题意得圆的半径为,故该圆的方程为(x-1)2+(y-1)2=2,故选D.2.圆x2+y2-4x+6y=0的圆心坐标是( )A.(2,3) B.(-2,3)C.(-2,-3) D.(2,-3)解析:选D 圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3).3.若点(2a,a-1)在圆x2+(y-1)2=5的内部,则a的取值范围是( )A.(-1,1) B.(0,1)C. D.解析:选D 由(2a)2+(a-2)2<5,得-<a<1.4.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是________.解析:若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+4a2-4(2a2+a-1)>0,即3a2+4a-4<0,解得-2<a<.答案:5.圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是________.解析:根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.答案:x2+(y-2)2=1[典例精析][例1] 已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为( )A.2+y2= B.2+y2=C.2+y2= D.2+y2=[解析] 法一:(待定系数法)设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则由题意得解得所以圆E的一般方程为x2+y2-x-1=0,即2+y2=.法二:(几何法)因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-=2(x-1)上.又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为.则圆E的半径为|EB|= =,所以圆E的标准方程为2+y2=.[答案] C[例2] 圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程为________________________.[解析] 法一:(几何法)设点C为圆心,因为点C在直线x-2y-3=0上,所以可设点C的坐标为(2a+3,a).又该圆经过A,B两点,所以|CA|=|CB|,即=,解得a=-2,所以圆心C的坐标为(-1,-2),半径r=,故所求圆的方程为(x+1)2+(y+2)2=10.法二:(待定系数法)设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意得解得a=-1,b=-2,r2=10,故所求圆的方程为(x+1)2+(y+2)2=10.[答案] (x+1)2+(y+2)2=10[解题技法]1.求圆的方程的两种方法几何法根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程待定系数法①根据题意,选择标准方程与一般方程;②根据条件列出关于a,b,r或D,E,F的方程组;③解出a,b,r或D,E,F,代入标准方程或一般方程 [提醒] 解答圆的有关问题时,应注意数形结合,充分运用圆的几何性质.2.确定圆心位置的方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上.(3)两圆相切时,切点与两圆圆心共线.[过关训练]1.若不同的四点A(5,0),B(-1,0),C(-3,3),D(a,3)共圆,则a的值为________.解析:设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),分别代入A,B,C三点坐标,得解得所以A,B,C三点确定的圆的方程为x2+y2-4x-y-5=0.因为D(a,3)也在此圆上,所以a2+9-4a-25-5=0.所以a=7或a=-3(舍去).即a的值为7.答案:72.已知圆心在直线y=-x+1上,且与直线x+y-2=0相切于点(1,1)的圆的方程为________________________.解析:设圆的方程为(x-a)2+(y-b)2=r2(r>0),则解得所以r= =.故所求圆的方程为2+2=.答案:2+2= [考法全析]考法(一) 斜率型最值问题[例1] 已知实数x,y满足方程x2+y2-4x+1=0,求的最大值和最小值.[解] 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.的几何意义是圆上一点与原点连线的斜率,所以设=k,即y=kx.当直线y=kx与圆相切时(如图),斜率k取最大值或最小值,此时=,解得k=±.所以的最大值为,最小值为-.考法(二) 截距型最值问题[例2] 已知点P(x,y)在圆C:x2+y2-6x-6y+14=0上,求x+y的最大值与最小值.[解] (转化为截距的最值问题求解)设x+y=b,则b表示动直线y=-x+b在y轴上的截距,显然当动直线y=-x+b与圆C相切时,b取得最大值或最小值,如图所示.由圆心C(3,3)到切线x+y=b的距离等于圆C的半径,可得=2,即|b-6|=2,解得b=6±2,所以x+y的最大值为6+2,最小值为6-2.考法(三) 距离型最值问题[例3] 已知实数x,y满足方程x2+y2-4x+1=0,求x2+y2的最大值和最小值.[解] 如图所示,x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为=2,所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.考法(四) 利用对称性求最值[例4] 已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y=0上,则|PA|+|PQ|的最小值是________.[解析] 因为圆C:x2+y2-4x-2y=0,故圆C是以C(2,1)为圆心,半径r=的圆.设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),故解得故A′(-4,-2).连接A′C交圆C于Q(图略),由对称性可知|PA|+|PQ|=|A′P|+|PQ|≥|A′Q|=|A′C|-r=2.[答案] 2[规律探求] 看个性考法(一)是形如μ=型的最值问题,可转化过定点(a,b)的动直线斜率的最值问题求解.如本题=表示过坐标原点的直线的斜率.考法(二)是求形如u=ax+by的最值,可转化为求动直线截距的最值.具体方法是:(1)数形结合法,当直线与圆相切时,直线在y轴上的截距取得最值;(2)把u=ax+by代入圆的方程中,消去y得到关于x的一元二次方程,由Δ≥0求得u的范围,进而求得最值.考法(三)是求形如t=(x-a)2+(y-b)2的最值,可转化为圆上的点到定点的距离的最值,即把(x-a)2+(y-b)2看作是点(a,b)与圆上的点(x,y)连线的距离的平方,利用数形结合法求解.考法(四)是形如|PA|+|PQ|形式的与圆有关的折线段问题(其中P,Q均为动点),要立足两点:①减少动点的个数.②“曲化直”,即折线段转化为同一直线上的两线段之和,一般要通过对称性解决.找共性求解与圆有关的最值问题,其通法是数形结合和转化化归思想,其流程为: [过关训练]1.已知点A(-1,0),B(0,2),点P是圆C:(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是( )A.2,2- B.2+,2-C.,4- D.+1,-1解析:选B 由题意知|AB|==,lAB:2x-y+2=0,由题意知圆C的圆心坐标为(1,0),∴圆心到直线lAB的距离d==.∴S△PAB的最大值为××=2+,S△PAB的最小值为××=2-.2.设P为直线3x-4y+11=0上的动点,过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为________.解析:圆的标准方程为(x-1)2+(y-1)2=1,圆心为C(1,1),半径r=1,根据对称性可知,四边形PACB的面积为2S△APC=2×|PA|r=|PA|=,要使四边形PACB的面积最小,则只需|PC|最小,|PC|最小时为圆心到直线l:3x-4y+11=0的距离d===2.所以四边形PACB面积的最小值为==.答案: [典例精析]已知直角三角形ABC的斜边为AB,且A(-1,0),B(3,0).(1)求直角顶点C的轨迹方程;(2)求直角边BC的中点M的轨迹方程.[解] (1)设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,所以kAC·kBC=-1,又kAC=,kBC=,所以·=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=,y=,所以x0=2x-3,y0=2y.由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4(y≠0),即(x-2)2+y2=1(y≠0).因此动点M的轨迹方程为(x-2)2+y2=1(y≠0). [解题技法]求与圆有关轨迹问题的3种方法(1)直接法:当题目条件中含有与该点有关的等式时,可设出该点的坐标,用坐标表示等式,直接求解轨迹方程.(2)定义法:当题目条件符合圆的定义时,可直接利用定义确定其圆心和半径,写出圆的方程.(3)代入法:当题目条件中已知某动点的轨迹方程,而要求的点与该动点有关时,常找出要求的点与已知点的关系,代入已知点满足的关系式求轨迹方程.[过关训练]1.自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为( )A.8x-6y-21=0 B.8x+6y-21=0C.6x+8y-21=0 D.6x-8y-21=0解析:选D 由题意得,圆心C的坐标为(3,-4),半径r=2,如图.因为|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x-3)2+(y+4)2,即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0,故选D.2.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作平行四边形MONP,求点P的轨迹.解:如图,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.因为平行四边形的对角线互相平分,所以=,=,整理得又点N(x+3,y-4)在圆x2+y2=4上,所以(x+3)2+(y-4)2=4.所以点P的轨迹是以(-3,4)为圆心,2为半径的圆.