还剩14页未读,
继续阅读
所属成套资源:2020高考人教版A版理科数学数学一轮复习讲义
成套系列资料,整套一键下载
2020版高考数学(理)新创新一轮复习通用版讲义:第九章第七节抛物线
展开
第七节抛物线
1.抛物线的定义
满足以下三个条件的点的轨迹是抛物线:
(1)在平面内;
(2)动点到定点F的距离与到定直线l的距离相等;
(3)定点不在定直线上.❶
其中点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2.抛物线的标准方程❷和几何性质
标准方程
y2=2px (p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
p的几何意义:焦点F到准线l的距离
图形
顶点
O(0,0)
对称轴
x轴
y轴
焦点
F
F
F
F
离心率
e=1
准线方程
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
焦半径(其中P(x0,y0))
|PF|=x0+
|PF|=-x0+
|PF|=y0+
|PF|=-y0+
若定点F在定直线l上,则动点的轨迹为过点F且垂直于l的一条直线.
四种不同抛物线方程的异同点
共同点
(1)原点都在抛物线上;
(2)焦点都在坐标轴上;
(3)准线与焦点所在坐标轴垂直,垂足与焦点关于原点对称,它们与原点的距离都等于一次项系数的绝对值的,即=
不同点
(1)焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2;
(2)开口方向与x轴(或y轴)的正半轴相同,即焦点在x轴(或y轴)的正半轴上,方程的右端取正号;开口方向与x轴(或y轴)的负半轴相同,即焦点在x轴(或y轴)的负半轴上,方程的右端取负号.
[熟记常用结论]
设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=,y1y2=-p2;
(2)|AF|=,|BF|=,弦长|AB|=x1+x2+p=(α为弦AB的倾斜角);
(3)+=;
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上.
[小题查验基础]
一、判断题(对的打“√”,错的打“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )
(2)抛物线y2=4x的焦点到准线的距离是4.( )
(3)抛物线既是中心对称图形,又是轴对称图形.( )
(4)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.( )
答案:(1)× (2)× (3)× (4)×
二、选填题
1.抛物线y=2x2的焦点坐标是( )
A. B.
C. D.
解析:选C 抛物线的标准方程为x2=y,所以焦点坐标是.
2.若点P到点F(0,2)的距离比它到直线y+4=0的距离小2,则P的轨迹方程为( )
A.y2=8x B.y2=-8x
C.x2=8y D.x2=-8y
解析:选C 点P到F(0,2)的距离比它到直线y+4=0的距离小2,因此P到F(0,2)的距离与它到直线y+2=0的距离相等,故P的轨迹是以F为焦点,y=-2为准线的抛物线,所以P的轨迹方程为x2=8y.
3.抛物线的顶点在原点,准线方程为x=-2,则抛物线方程是( )
A.y2=-8x B.y2=-4x
C.y2=8x D.y2=4x
解析:选C 由抛物线的顶点在原点,准线方程为x=-2,知p=4,且开口向右,故抛物线方程为y2=8x.
4.焦点在直线2x+y+2=0上的抛物线的标准方程为____________________.
解析:当焦点在x轴上时,令方程2x+y+2=0中的y=0,得焦点为(-1,0),
故抛物线方程为y2=-4x,
当焦点在y轴上时,令方程2x+y+2=0中的x=0,得焦点为(0,-2),
故抛物线方程为x2=-8y.
答案:y2=-4x或x2=-8y
5.若抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是________.
解析:M到准线的距离等于M到焦点的距离,
又准线方程为y=-,
设M(x,y),则y+=1,∴y=.
答案:
考点一 抛物线的定义及应用[师生共研过关]
[典例精析]
(1)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为( )
A. B.1
C. D.2
(2)设P是抛物线y2=4x上的一个动点,F是抛物线的焦点.若B(3,2),则|PB|+|PF|的最小值为________.
[解析] (1)设P(xP,yP),由题可得抛物线焦点为F(1,0),准线方程为x=-1.
又点P到焦点F的距离为2,
∴由定义知点P到准线的距离为2.
∴xP+1=2,∴xP=1.
代入抛物线方程得|yP|=2,
∴△OFP的面积为S=·|OF|·|yP|=×1×2=1.
(2)如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,
则|P1Q|=|P1F|.
则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,
即|PB|+|PF|的最小值为4.
[答案] (1)B (2)4
1.(变条件)若将本例(2)中“B(3,2)”改为B(3,4),则|PB|+|PF|的最小值为________.
解析:由题意可知点B(3,4)在抛物线的外部.
∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),
∴|PB|+|PF|≥|BF|==2,
即|PB|+|PF|的最小值为2.
答案:2
2.(变设问)在本例(2)条件下,点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.
解析:如图,易知抛物线的焦点为F(1,0),准线是x=-1,
由抛物线的定义知点P到直线x=-1的距离等于点P到点F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到点F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为=.
答案:
[解题技法]
与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.
[提醒] 注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+或|PF|=|y|+.
[过关训练]
1.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为________.
解析:过点M作准线的垂线,垂足是N,则|MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时M(2,2).
答案:(2,2)
2.(2019·襄阳测试)已知抛物线y=x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=|NF|,则|MF|=________.
解析:如图,过N作准线的垂线NH,垂足为H.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|NM|=|NH|,则∠NMH=45°.在△MFK中,∠FMK=45°,所以|MF|=|FK|.而|FK|=1.所以|MF|=.
答案:
考点二 抛物线的标准方程与几何性质[师生共研过关]
[典例精析]
(1)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为( )
A.(-1,0) B.(1,0)
C.(0,-1) D.(0,1)
(2)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点A(0,2),则C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
[解析] (1)抛物线y2=2px(p>0)的准线为x=-且过点(-1,1),故-=-1,解得p=2.所以抛物线的焦点坐标为(1,0).
(2)由已知得抛物线的焦点F设点M(x0,y0),则=,=.由已知得,·=0,即y-8y0+16=0,
因而y0=4,M.
由|MF|=5,得 =5.又p>0,解得p=2或p=8.故C的方程为y2=4x或y2=16x.
[答案] (1)B (2)C
[解题技法]
1.求抛物线标准方程的方法
(1)定义法:若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可.
(2)待定系数法:若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.
2.抛物线性质的应用技巧
(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.
(2)要结合图形分析,灵活运用平面图形的性质简化运算.
[过关训练]
1.(2019·武汉调研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=6,则此抛物线方程为( )
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
解析:选B 如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由抛物线定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=6,|AC|=6+3a,2|AE|=|AC|,所以6+3a=12,从而得a=2,|FC|=3a=6,所以p=|FG|=|FC|=3,因此抛物线方程为y2=6x.
2.(2018·合肥模拟)已知抛物线x2=2py(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是4的等边三角形,则此抛物线的方程为________.
解析:△FPM为等边三角形,则|PM|=|PF|,由抛物线的定义得PM垂直于抛物线的准线,设P,则点M.因为焦点F,△FPM是等边三角形,所以解得因此抛物线方程为x2=4y.
答案:x2=4y
考点三 直线与抛物线的位置关系[师生共研过关]
[典例精析]
设A,B为曲线C:y=上两点,A与B的横坐标之和为2.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,曲线C在点M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
[解] (1)设A(x1,y1),B(x2,y2),
则x1≠x2,y1=,y2=,x1+x2=2,
故直线AB的斜率k===1.
(2)由y=,得y′=x.
设M(x3,y3),由题设知x3=1,于是M.
设直线AB的方程为y=x+m,
故线段AB的中点为N(1,1+m),|MN|=.
将y=x+m代入y=,得x2-2x-2m=0.
由Δ=4+8m>0,得m>-,x1,2=1±.
从而|AB|=|x1-x2|=2.
由题设知|AB|=2|MN|,
即=,解得m=.
所以直线AB的方程为y=x+.
[解题技法]
1.直线与抛物线交点问题的解题思路
(1)求交点问题,通常解直线方程与抛物线方程组成的方程组.
(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.
2.解决抛物线的弦及弦中点问题的常用方法
(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.
(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.
[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.
[过关训练]
1.(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.
解析:设A(x1,y1),B(x2,y2),
则∴y-y=4(x1-x2),
∴k==.
设AB中点为M′(x0,y0),抛物线的焦点为F,分别过点A,B作准线x=-1的垂线,垂足为A′,B′,
则|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).
∵M′(x0,y0)为AB中点,
∴M为A′B′的中点,∴MM′平行于x轴,
∴y1+y2=2,∴k=2.
答案:2
2.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
解:(1)易知直线与抛物线的交点坐标为(8,-8),
∴(-8)2=2p×8,∴2p=8,
∴抛物线C的方程为y2=8x.
(2)直线l2与l1垂直,故可设直线l2:x=y+m,A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.
由得y2-8y-8m=0,
Δ=64+32m>0,∴m>-2.
y1+y2=8,y1y2=-8m,
∴x1x2==m2.
由题意可知OA⊥OB,即x1x2+y1y2=m2-8m=0,
∴m=8或m=0(舍去),∴直线l2:x=y+8,M(8,0).
故S△FAB=S△FMB+S△FMA=·|FM|·|y1-y2|=3=24.
一、题点全面练
1.(2019·张掖诊断)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=( )
A.9 B.8
C.7 D.6
解析:选B 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.故选B.
2.顶点在原点,对称轴为坐标轴,且过点P(-4,-2)的抛物线的标准方程是( )
A.y2=-x B.x2=-8y
C.y2=-8x或x2=-y D.y2=-x或x2=-8y
解析:选D (待定系数法)设抛物线为y2=mx,代入点P(-4,-2),解得m=-1,则抛物线方程为y2=-x;设抛物线为x2=ny,代入点P(-4,-2),解得n=-8,则抛物线方程为x2=-8y.故抛物线方程为y2=-x或x2=-8y.
3.(2018·河北“五个一名校联盟”模拟)直线l过抛物线y2=-2px(p>0)的焦点,且与该抛物线交于A,B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线的方程是( )
A.y2=-12x B.y2=-8x
C.y2=-6x D.y2=-4x
解析:选B 设A(x1,y1),B(x2,y2),根据抛物线的定义可知|AB|=-(x1+x2)+p=8.又AB的中点到y轴的距离为2,∴-=2,∴x1+x2=-4,∴p=4,∴所求抛物线的方程为y2=-8x.故选B.
4.(2019·昆明调研)过抛物线C:y2=2px(p>0)的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段AB的中点N且垂直于l的直线与C的准线交于点M,若|MN|=|AB|,则l的斜率为( )
A. B.
C. D.1
解析:选B 设抛物线的准线为m,分别过点A,N,B作AA′⊥m,NN′⊥m,BB′⊥m,垂足分别为A′,N′,B′.
因为直线l过抛物线的焦点,
所以|BB′|=|BF|,|AA′|=|AF|.
又N是线段AB的中点,|MN|=|AB|,
所以|NN′|=(|BB′|+|AA′|)=(|BF|+|AF|)=|AB|=|MN|,所以∠MNN′=60°,
则直线MN的倾斜角是120°.
又MN⊥l,所以直线l的倾斜角是30°,斜率是.故选B.
5.(2018·合肥模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点.若|FA|=2|FB|,则k=( )
A. B.
C. D.
解析:选D 设抛物线C:y2=8x的准线为l,易知l:x=-2,直线y=k(x+2)恒过定点P(-2,0),
如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,连接OB,
由|FA|=2|FB|,
知|AM|=2|BN|,
∴点B为线段AP的中点,
则|OB|=|AF|,
∴|OB|=|BF|,∴点B的横坐标为1,
∵k>0,
∴点B的坐标为(1,2),
∴k==.故选D.
6.一个顶点在原点,另外两点在抛物线y2=2x上的正三角形的面积为________.
解析:如图,根据抛物线的对称性得∠AOx=30°.
直线OA的方程y=x,
代入y2=2x,得x2-6x=0,
解得x=0或x=6.
即得A的坐标为(6,2).
∴|AB|=4,正三角形OAB的面积为×4×6=12.
答案:12
7.已知抛物线y2=4x的焦点为F,过点F作一条直线交抛物线于A,B两点.若|AF|=3,则|BF|=________.
解析:由题意可知F(1,0),设A(xA,yA),B(xB,yB),点A在第一象限,
则|AF|=xA+1=3,所以xA=2,yA=2,
所以直线AB的斜率为k==2.
则直线AB的方程为y=2(x-1),
与抛物线方程联立整理得2x2-5x+2=0,xA+xB=,
所以xB=,所以|BF|=+1=.
答案:
8.(2019·贵阳模拟)过抛物线y2=2px(p>0)的焦点F,且倾斜角为60°的直线交抛物线于A,B两点,若|AF|>|BF|,且|AF|=2,则p=________.
解析:过点A,B向抛物线的准线x=-作垂线,垂足分别为C,D,过点B向AC作垂线,垂足为E,∵A,B两点在抛物线上,∴|AC|=|AF|,|BD|=|BF|.
∵BE⊥AC,∴|AE|=|AF|-|BF|,
∵直线AB的倾斜角为60°,
∴在Rt△ABE中,2|AE|=|AB|=|AF|+|BF|,
即2(|AF|-|BF|)=|AF|+|BF|,∴|AF|=3|BF|.
∵|AF|=2,∴|BF|=,∴|AB|=|AF|+|BF|=.
设直线AB的方程为y=,代入y2=2px,
得3x2-5px+=0,设A(x1,y1),B(x2,y2),
∴x1+x2=p,∵|AB|=x1+x2+p=,∴p=1.
答案:1
9.已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.
解:(1)由题意得直线AB的方程为y=2,
与y2=2px联立,
消去y有4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=+p=9,
所以p=4,从而该抛物线的方程为y2=8x.
(2)由(1)得4x2-5px+p2=0,
即x2-5x+4=0,则x1=1,x2=4,
于是y1=-2,y2=4,
从而A(1,-2),B(4,4).
设C(x3,y3),则=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2).
又y=8x3,所以[2(2λ-1)]2=8(4λ+1),
整理得(2λ-1)2=4λ+1,解得λ=0或λ=2.
故λ的值为0或2.
10.设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.
(1)当l与x轴垂直时,求直线BM的方程;
(2)证明:∠ABM=∠ABN.
解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).
所以直线BM的方程为y=x+1或y=-x-1.
(2)证明:当l与x轴垂直时,AB为MN的垂直平分线,
所以∠ABM=∠ABN.
当l与x轴不垂直时,设l的方程为y=k(x-2)(k≠0),
M(x1,y1),N(x2,y2),则x1>0,x2>0.
由得ky2-2y-4k=0,
可知y1+y2=,y1y2=-4.
直线BM,BN的斜率之和为kBM+kBN=+=.①
将x1=+2,x2=+2及y1+y2,y1y2的表达式代入①式分子,可得x2y1+x1y2+2(y1+y1)===0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以∠ABM=∠ABN.综上,∠ABM=∠ABN.
二、专项培优练
(一)易错专练——不丢怨枉分
1.(2019·大同模拟)点M(5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是( )
A.y=12x2 B.y=12x2或y=-36x2
C.y=-36x2 D.y=x2或y=-x2
解析:选D 抛物线标准方程为x2=y(a≠0),当a>0时,开口向上,准线方程为y=-,则点M到准线的距离为3+=6,解得a=,则抛物线方程为y=x2;
当a<0时,开口向下,准线方程为y=-,则点M到准线的距离为--3=6,解得a=-,则抛物线方程为y=-x2.
2.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则实数a的取值范围为________.
解析:如图,设C(x0,x)(x≠a),A(-,a),B(,a),
则=(--x0,a-x),
=(-x0,a-x).
∵CA⊥CB,∴·=0,
即-(a-x)+(a-x)2=0,
整理得(a-x)(-1+a-x)=0.
∴x=a-1≥0,∴a≥1.
答案:[1,+∞)
3.过抛物线x2=4y的焦点F作直线AB,CD与抛物线交于A,B,C,D四点,且AB⊥CD,则·+·的最大值为________.
解析:设A(xA,yA),B(xB,yB),
依题意可得,·=-(||·||).
又因为||=yA+1,||=yB+1,
所以·=-(yAyB+yA+yB+1).
设直线AB的方程为y=kx+1(k≠0),
代入x2=4y,可得y2-(2+4k2)y+1=0,
所以yA+yB=4k2+2,yAyB=1,
所以·=-(4k2+4).
同理·=-.
所以·+·=-≤-16.
当且仅当k=±1时等号成立.
故FA·FB+FC·FD的最大值为-16.
答案:-16
4.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程;
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·的最小值.
解:(1)设动点P的坐标为(x,y),由题意得-|x|=1,化简得y2=2x+2|x|.
当x≥0时,y2=4x;当x<0时,y=0.
所以动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).
(2)由题意知,直线l1的斜率存在且不为0,设为k,
则l1的方程为y=k(x-1).
由得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=2+,x1x2=1.因为l1⊥l2,所以l2的斜率为-.设D(x3,y3),E(x4,y4),
则同理可得x3+x4=2+4k2,x3x4=1.
所以·=(+)·(+)
=·+·+·+·
=||·||+||·||
=(x1+1)(x2+1)+(x3+1)(x4+1)
=1++1+1+(2+4k2)+1
=8+4≥8+4×2=16.
当且仅当k2=,即k=±1时,·取最小值16.
(二)交汇专练——融会巧迁移
5.[与向量的交汇]设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( )
A.5 B.6
C.7 D.8
解析:选D 由题意知直线MN的方程为y=(x+2),
联立解得或
不妨设M(1,2),N(4,4).
又∵抛物线焦点为F(1,0),
∴=(0,2),=(3,4).
∴·=0×3+2×4=8.
6.[与解三角形交汇]抛物线y2=4x的焦点为F,A(x1,y1),B(x2,y2)是抛物线上两动点,若|AB|=( x1+x2+2),则∠AFB的最大值为( )
A. B.
C. D.
解析:选A 因为|AB|=(x1+x2+2),|AF|+|BF|=x1+x2+p=x1+x2+2,所以|AF|+|BF|=|AB|.
在△AFB中,由余弦定理得
cos∠AFB=
=
=-1=-1.
又|AF|+|BF|=|AB|≥2⇒|AF|·|BF|≤|AB|2.所以cos∠AFB≥-1=-,所以∠AFB的最大值为.故选A.
7.[与双曲线交汇]已知双曲线C1:-=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程是( )
A.x2=16y B.x2=8y
C.x2=y D.x2=y
解析:选A 因为双曲线C1:-=1(a>0,b>0)的离心率为2,所以=2,即=4,所以=3.因为双曲线的渐近线方程为bx±ay=0,抛物线C2:x2=2py(p>0)的焦点到双曲线的渐近线的距离为2,所以=2,解得p=8,所以抛物线C2的方程是x2=16y.
8.[与不等式交汇]已知抛物线C:x2=2py(p>0),P,Q是C上任意两点,点M(0,-1)满足·≥0,则p的取值范围是________.
解析:过M点作抛物线的两条切线,
设切线方程为y=kx-1,
切点坐标为A(x0,y0),B(-x0,y0),
由y=,得y′=x,
则解得k=± .
∵·≥0恒成立,∴∠AMB≤90°,即∠AMO≤45°,
∴|k|≥tan 45°=1,即 ≥1,解得p≤2,
由p>0,则0<p≤2,
∴p的取值范围为(0,2].
答案:(0,2]
9.[与圆交汇]已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线的交点为N.
(1)若N在以AB为直径的圆上,求p的值;
(2)若△ABN的面积的最小值为4,求抛物线C的方程.
解:设直线AB:y=kx+1,A(x1,y1),B(x2,y2),
将直线AB的方程代入抛物线C的方程得x2-2pkx-2p=0,则x1+x2=2pk,x1x2=-2p.①
(1)由x2=2py得y′=,则A,B处的切线斜率的乘积为=-,
∵点N在以AB为直径的圆上,
∴AN⊥BN,∴-=-1,∴p=2.
(2)易得直线AN:y-y1=(x-x1),直线BN:y-y2=(x-x2),联立,得结合①式,
解得即N(pk,-1).
|AB|=|x2-x1|=·
=·,
点N到直线AB的距离d==,
则△ABN的面积S△ABN=·|AB|·d=≥2,当k=0时,取等号,
∵△ABN的面积的最小值为4,
∴2=4,∴p=2,故抛物线C的方程为x2=4y.
1.抛物线的定义
满足以下三个条件的点的轨迹是抛物线:
(1)在平面内;
(2)动点到定点F的距离与到定直线l的距离相等;
(3)定点不在定直线上.❶
其中点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2.抛物线的标准方程❷和几何性质
标准方程
y2=2px (p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
p的几何意义:焦点F到准线l的距离
图形
顶点
O(0,0)
对称轴
x轴
y轴
焦点
F
F
F
F
离心率
e=1
准线方程
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
焦半径(其中P(x0,y0))
|PF|=x0+
|PF|=-x0+
|PF|=y0+
|PF|=-y0+
若定点F在定直线l上,则动点的轨迹为过点F且垂直于l的一条直线.
四种不同抛物线方程的异同点
共同点
(1)原点都在抛物线上;
(2)焦点都在坐标轴上;
(3)准线与焦点所在坐标轴垂直,垂足与焦点关于原点对称,它们与原点的距离都等于一次项系数的绝对值的,即=
不同点
(1)焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2;
(2)开口方向与x轴(或y轴)的正半轴相同,即焦点在x轴(或y轴)的正半轴上,方程的右端取正号;开口方向与x轴(或y轴)的负半轴相同,即焦点在x轴(或y轴)的负半轴上,方程的右端取负号.
[熟记常用结论]
设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=,y1y2=-p2;
(2)|AF|=,|BF|=,弦长|AB|=x1+x2+p=(α为弦AB的倾斜角);
(3)+=;
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上.
[小题查验基础]
一、判断题(对的打“√”,错的打“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )
(2)抛物线y2=4x的焦点到准线的距离是4.( )
(3)抛物线既是中心对称图形,又是轴对称图形.( )
(4)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.( )
答案:(1)× (2)× (3)× (4)×
二、选填题
1.抛物线y=2x2的焦点坐标是( )
A. B.
C. D.
解析:选C 抛物线的标准方程为x2=y,所以焦点坐标是.
2.若点P到点F(0,2)的距离比它到直线y+4=0的距离小2,则P的轨迹方程为( )
A.y2=8x B.y2=-8x
C.x2=8y D.x2=-8y
解析:选C 点P到F(0,2)的距离比它到直线y+4=0的距离小2,因此P到F(0,2)的距离与它到直线y+2=0的距离相等,故P的轨迹是以F为焦点,y=-2为准线的抛物线,所以P的轨迹方程为x2=8y.
3.抛物线的顶点在原点,准线方程为x=-2,则抛物线方程是( )
A.y2=-8x B.y2=-4x
C.y2=8x D.y2=4x
解析:选C 由抛物线的顶点在原点,准线方程为x=-2,知p=4,且开口向右,故抛物线方程为y2=8x.
4.焦点在直线2x+y+2=0上的抛物线的标准方程为____________________.
解析:当焦点在x轴上时,令方程2x+y+2=0中的y=0,得焦点为(-1,0),
故抛物线方程为y2=-4x,
当焦点在y轴上时,令方程2x+y+2=0中的x=0,得焦点为(0,-2),
故抛物线方程为x2=-8y.
答案:y2=-4x或x2=-8y
5.若抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是________.
解析:M到准线的距离等于M到焦点的距离,
又准线方程为y=-,
设M(x,y),则y+=1,∴y=.
答案:
考点一 抛物线的定义及应用[师生共研过关]
[典例精析]
(1)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为( )
A. B.1
C. D.2
(2)设P是抛物线y2=4x上的一个动点,F是抛物线的焦点.若B(3,2),则|PB|+|PF|的最小值为________.
[解析] (1)设P(xP,yP),由题可得抛物线焦点为F(1,0),准线方程为x=-1.
又点P到焦点F的距离为2,
∴由定义知点P到准线的距离为2.
∴xP+1=2,∴xP=1.
代入抛物线方程得|yP|=2,
∴△OFP的面积为S=·|OF|·|yP|=×1×2=1.
(2)如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,
则|P1Q|=|P1F|.
则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,
即|PB|+|PF|的最小值为4.
[答案] (1)B (2)4
1.(变条件)若将本例(2)中“B(3,2)”改为B(3,4),则|PB|+|PF|的最小值为________.
解析:由题意可知点B(3,4)在抛物线的外部.
∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),
∴|PB|+|PF|≥|BF|==2,
即|PB|+|PF|的最小值为2.
答案:2
2.(变设问)在本例(2)条件下,点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.
解析:如图,易知抛物线的焦点为F(1,0),准线是x=-1,
由抛物线的定义知点P到直线x=-1的距离等于点P到点F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到点F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为=.
答案:
[解题技法]
与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.
[提醒] 注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+或|PF|=|y|+.
[过关训练]
1.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为________.
解析:过点M作准线的垂线,垂足是N,则|MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时M(2,2).
答案:(2,2)
2.(2019·襄阳测试)已知抛物线y=x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=|NF|,则|MF|=________.
解析:如图,过N作准线的垂线NH,垂足为H.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|NM|=|NH|,则∠NMH=45°.在△MFK中,∠FMK=45°,所以|MF|=|FK|.而|FK|=1.所以|MF|=.
答案:
考点二 抛物线的标准方程与几何性质[师生共研过关]
[典例精析]
(1)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为( )
A.(-1,0) B.(1,0)
C.(0,-1) D.(0,1)
(2)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点A(0,2),则C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
[解析] (1)抛物线y2=2px(p>0)的准线为x=-且过点(-1,1),故-=-1,解得p=2.所以抛物线的焦点坐标为(1,0).
(2)由已知得抛物线的焦点F设点M(x0,y0),则=,=.由已知得,·=0,即y-8y0+16=0,
因而y0=4,M.
由|MF|=5,得 =5.又p>0,解得p=2或p=8.故C的方程为y2=4x或y2=16x.
[答案] (1)B (2)C
[解题技法]
1.求抛物线标准方程的方法
(1)定义法:若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可.
(2)待定系数法:若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.
2.抛物线性质的应用技巧
(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.
(2)要结合图形分析,灵活运用平面图形的性质简化运算.
[过关训练]
1.(2019·武汉调研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=6,则此抛物线方程为( )
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
解析:选B 如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由抛物线定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=6,|AC|=6+3a,2|AE|=|AC|,所以6+3a=12,从而得a=2,|FC|=3a=6,所以p=|FG|=|FC|=3,因此抛物线方程为y2=6x.
2.(2018·合肥模拟)已知抛物线x2=2py(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是4的等边三角形,则此抛物线的方程为________.
解析:△FPM为等边三角形,则|PM|=|PF|,由抛物线的定义得PM垂直于抛物线的准线,设P,则点M.因为焦点F,△FPM是等边三角形,所以解得因此抛物线方程为x2=4y.
答案:x2=4y
考点三 直线与抛物线的位置关系[师生共研过关]
[典例精析]
设A,B为曲线C:y=上两点,A与B的横坐标之和为2.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,曲线C在点M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
[解] (1)设A(x1,y1),B(x2,y2),
则x1≠x2,y1=,y2=,x1+x2=2,
故直线AB的斜率k===1.
(2)由y=,得y′=x.
设M(x3,y3),由题设知x3=1,于是M.
设直线AB的方程为y=x+m,
故线段AB的中点为N(1,1+m),|MN|=.
将y=x+m代入y=,得x2-2x-2m=0.
由Δ=4+8m>0,得m>-,x1,2=1±.
从而|AB|=|x1-x2|=2.
由题设知|AB|=2|MN|,
即=,解得m=.
所以直线AB的方程为y=x+.
[解题技法]
1.直线与抛物线交点问题的解题思路
(1)求交点问题,通常解直线方程与抛物线方程组成的方程组.
(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.
2.解决抛物线的弦及弦中点问题的常用方法
(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.
(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.
[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.
[过关训练]
1.(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.
解析:设A(x1,y1),B(x2,y2),
则∴y-y=4(x1-x2),
∴k==.
设AB中点为M′(x0,y0),抛物线的焦点为F,分别过点A,B作准线x=-1的垂线,垂足为A′,B′,
则|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).
∵M′(x0,y0)为AB中点,
∴M为A′B′的中点,∴MM′平行于x轴,
∴y1+y2=2,∴k=2.
答案:2
2.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
解:(1)易知直线与抛物线的交点坐标为(8,-8),
∴(-8)2=2p×8,∴2p=8,
∴抛物线C的方程为y2=8x.
(2)直线l2与l1垂直,故可设直线l2:x=y+m,A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.
由得y2-8y-8m=0,
Δ=64+32m>0,∴m>-2.
y1+y2=8,y1y2=-8m,
∴x1x2==m2.
由题意可知OA⊥OB,即x1x2+y1y2=m2-8m=0,
∴m=8或m=0(舍去),∴直线l2:x=y+8,M(8,0).
故S△FAB=S△FMB+S△FMA=·|FM|·|y1-y2|=3=24.
一、题点全面练
1.(2019·张掖诊断)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=( )
A.9 B.8
C.7 D.6
解析:选B 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.故选B.
2.顶点在原点,对称轴为坐标轴,且过点P(-4,-2)的抛物线的标准方程是( )
A.y2=-x B.x2=-8y
C.y2=-8x或x2=-y D.y2=-x或x2=-8y
解析:选D (待定系数法)设抛物线为y2=mx,代入点P(-4,-2),解得m=-1,则抛物线方程为y2=-x;设抛物线为x2=ny,代入点P(-4,-2),解得n=-8,则抛物线方程为x2=-8y.故抛物线方程为y2=-x或x2=-8y.
3.(2018·河北“五个一名校联盟”模拟)直线l过抛物线y2=-2px(p>0)的焦点,且与该抛物线交于A,B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线的方程是( )
A.y2=-12x B.y2=-8x
C.y2=-6x D.y2=-4x
解析:选B 设A(x1,y1),B(x2,y2),根据抛物线的定义可知|AB|=-(x1+x2)+p=8.又AB的中点到y轴的距离为2,∴-=2,∴x1+x2=-4,∴p=4,∴所求抛物线的方程为y2=-8x.故选B.
4.(2019·昆明调研)过抛物线C:y2=2px(p>0)的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段AB的中点N且垂直于l的直线与C的准线交于点M,若|MN|=|AB|,则l的斜率为( )
A. B.
C. D.1
解析:选B 设抛物线的准线为m,分别过点A,N,B作AA′⊥m,NN′⊥m,BB′⊥m,垂足分别为A′,N′,B′.
因为直线l过抛物线的焦点,
所以|BB′|=|BF|,|AA′|=|AF|.
又N是线段AB的中点,|MN|=|AB|,
所以|NN′|=(|BB′|+|AA′|)=(|BF|+|AF|)=|AB|=|MN|,所以∠MNN′=60°,
则直线MN的倾斜角是120°.
又MN⊥l,所以直线l的倾斜角是30°,斜率是.故选B.
5.(2018·合肥模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点.若|FA|=2|FB|,则k=( )
A. B.
C. D.
解析:选D 设抛物线C:y2=8x的准线为l,易知l:x=-2,直线y=k(x+2)恒过定点P(-2,0),
如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,连接OB,
由|FA|=2|FB|,
知|AM|=2|BN|,
∴点B为线段AP的中点,
则|OB|=|AF|,
∴|OB|=|BF|,∴点B的横坐标为1,
∵k>0,
∴点B的坐标为(1,2),
∴k==.故选D.
6.一个顶点在原点,另外两点在抛物线y2=2x上的正三角形的面积为________.
解析:如图,根据抛物线的对称性得∠AOx=30°.
直线OA的方程y=x,
代入y2=2x,得x2-6x=0,
解得x=0或x=6.
即得A的坐标为(6,2).
∴|AB|=4,正三角形OAB的面积为×4×6=12.
答案:12
7.已知抛物线y2=4x的焦点为F,过点F作一条直线交抛物线于A,B两点.若|AF|=3,则|BF|=________.
解析:由题意可知F(1,0),设A(xA,yA),B(xB,yB),点A在第一象限,
则|AF|=xA+1=3,所以xA=2,yA=2,
所以直线AB的斜率为k==2.
则直线AB的方程为y=2(x-1),
与抛物线方程联立整理得2x2-5x+2=0,xA+xB=,
所以xB=,所以|BF|=+1=.
答案:
8.(2019·贵阳模拟)过抛物线y2=2px(p>0)的焦点F,且倾斜角为60°的直线交抛物线于A,B两点,若|AF|>|BF|,且|AF|=2,则p=________.
解析:过点A,B向抛物线的准线x=-作垂线,垂足分别为C,D,过点B向AC作垂线,垂足为E,∵A,B两点在抛物线上,∴|AC|=|AF|,|BD|=|BF|.
∵BE⊥AC,∴|AE|=|AF|-|BF|,
∵直线AB的倾斜角为60°,
∴在Rt△ABE中,2|AE|=|AB|=|AF|+|BF|,
即2(|AF|-|BF|)=|AF|+|BF|,∴|AF|=3|BF|.
∵|AF|=2,∴|BF|=,∴|AB|=|AF|+|BF|=.
设直线AB的方程为y=,代入y2=2px,
得3x2-5px+=0,设A(x1,y1),B(x2,y2),
∴x1+x2=p,∵|AB|=x1+x2+p=,∴p=1.
答案:1
9.已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.
解:(1)由题意得直线AB的方程为y=2,
与y2=2px联立,
消去y有4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=+p=9,
所以p=4,从而该抛物线的方程为y2=8x.
(2)由(1)得4x2-5px+p2=0,
即x2-5x+4=0,则x1=1,x2=4,
于是y1=-2,y2=4,
从而A(1,-2),B(4,4).
设C(x3,y3),则=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2).
又y=8x3,所以[2(2λ-1)]2=8(4λ+1),
整理得(2λ-1)2=4λ+1,解得λ=0或λ=2.
故λ的值为0或2.
10.设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.
(1)当l与x轴垂直时,求直线BM的方程;
(2)证明:∠ABM=∠ABN.
解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).
所以直线BM的方程为y=x+1或y=-x-1.
(2)证明:当l与x轴垂直时,AB为MN的垂直平分线,
所以∠ABM=∠ABN.
当l与x轴不垂直时,设l的方程为y=k(x-2)(k≠0),
M(x1,y1),N(x2,y2),则x1>0,x2>0.
由得ky2-2y-4k=0,
可知y1+y2=,y1y2=-4.
直线BM,BN的斜率之和为kBM+kBN=+=.①
将x1=+2,x2=+2及y1+y2,y1y2的表达式代入①式分子,可得x2y1+x1y2+2(y1+y1)===0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以∠ABM=∠ABN.综上,∠ABM=∠ABN.
二、专项培优练
(一)易错专练——不丢怨枉分
1.(2019·大同模拟)点M(5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是( )
A.y=12x2 B.y=12x2或y=-36x2
C.y=-36x2 D.y=x2或y=-x2
解析:选D 抛物线标准方程为x2=y(a≠0),当a>0时,开口向上,准线方程为y=-,则点M到准线的距离为3+=6,解得a=,则抛物线方程为y=x2;
当a<0时,开口向下,准线方程为y=-,则点M到准线的距离为--3=6,解得a=-,则抛物线方程为y=-x2.
2.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则实数a的取值范围为________.
解析:如图,设C(x0,x)(x≠a),A(-,a),B(,a),
则=(--x0,a-x),
=(-x0,a-x).
∵CA⊥CB,∴·=0,
即-(a-x)+(a-x)2=0,
整理得(a-x)(-1+a-x)=0.
∴x=a-1≥0,∴a≥1.
答案:[1,+∞)
3.过抛物线x2=4y的焦点F作直线AB,CD与抛物线交于A,B,C,D四点,且AB⊥CD,则·+·的最大值为________.
解析:设A(xA,yA),B(xB,yB),
依题意可得,·=-(||·||).
又因为||=yA+1,||=yB+1,
所以·=-(yAyB+yA+yB+1).
设直线AB的方程为y=kx+1(k≠0),
代入x2=4y,可得y2-(2+4k2)y+1=0,
所以yA+yB=4k2+2,yAyB=1,
所以·=-(4k2+4).
同理·=-.
所以·+·=-≤-16.
当且仅当k=±1时等号成立.
故FA·FB+FC·FD的最大值为-16.
答案:-16
4.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程;
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·的最小值.
解:(1)设动点P的坐标为(x,y),由题意得-|x|=1,化简得y2=2x+2|x|.
当x≥0时,y2=4x;当x<0时,y=0.
所以动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).
(2)由题意知,直线l1的斜率存在且不为0,设为k,
则l1的方程为y=k(x-1).
由得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=2+,x1x2=1.因为l1⊥l2,所以l2的斜率为-.设D(x3,y3),E(x4,y4),
则同理可得x3+x4=2+4k2,x3x4=1.
所以·=(+)·(+)
=·+·+·+·
=||·||+||·||
=(x1+1)(x2+1)+(x3+1)(x4+1)
=1++1+1+(2+4k2)+1
=8+4≥8+4×2=16.
当且仅当k2=,即k=±1时,·取最小值16.
(二)交汇专练——融会巧迁移
5.[与向量的交汇]设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( )
A.5 B.6
C.7 D.8
解析:选D 由题意知直线MN的方程为y=(x+2),
联立解得或
不妨设M(1,2),N(4,4).
又∵抛物线焦点为F(1,0),
∴=(0,2),=(3,4).
∴·=0×3+2×4=8.
6.[与解三角形交汇]抛物线y2=4x的焦点为F,A(x1,y1),B(x2,y2)是抛物线上两动点,若|AB|=( x1+x2+2),则∠AFB的最大值为( )
A. B.
C. D.
解析:选A 因为|AB|=(x1+x2+2),|AF|+|BF|=x1+x2+p=x1+x2+2,所以|AF|+|BF|=|AB|.
在△AFB中,由余弦定理得
cos∠AFB=
=
=-1=-1.
又|AF|+|BF|=|AB|≥2⇒|AF|·|BF|≤|AB|2.所以cos∠AFB≥-1=-,所以∠AFB的最大值为.故选A.
7.[与双曲线交汇]已知双曲线C1:-=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程是( )
A.x2=16y B.x2=8y
C.x2=y D.x2=y
解析:选A 因为双曲线C1:-=1(a>0,b>0)的离心率为2,所以=2,即=4,所以=3.因为双曲线的渐近线方程为bx±ay=0,抛物线C2:x2=2py(p>0)的焦点到双曲线的渐近线的距离为2,所以=2,解得p=8,所以抛物线C2的方程是x2=16y.
8.[与不等式交汇]已知抛物线C:x2=2py(p>0),P,Q是C上任意两点,点M(0,-1)满足·≥0,则p的取值范围是________.
解析:过M点作抛物线的两条切线,
设切线方程为y=kx-1,
切点坐标为A(x0,y0),B(-x0,y0),
由y=,得y′=x,
则解得k=± .
∵·≥0恒成立,∴∠AMB≤90°,即∠AMO≤45°,
∴|k|≥tan 45°=1,即 ≥1,解得p≤2,
由p>0,则0<p≤2,
∴p的取值范围为(0,2].
答案:(0,2]
9.[与圆交汇]已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线的交点为N.
(1)若N在以AB为直径的圆上,求p的值;
(2)若△ABN的面积的最小值为4,求抛物线C的方程.
解:设直线AB:y=kx+1,A(x1,y1),B(x2,y2),
将直线AB的方程代入抛物线C的方程得x2-2pkx-2p=0,则x1+x2=2pk,x1x2=-2p.①
(1)由x2=2py得y′=,则A,B处的切线斜率的乘积为=-,
∵点N在以AB为直径的圆上,
∴AN⊥BN,∴-=-1,∴p=2.
(2)易得直线AN:y-y1=(x-x1),直线BN:y-y2=(x-x2),联立,得结合①式,
解得即N(pk,-1).
|AB|=|x2-x1|=·
=·,
点N到直线AB的距离d==,
则△ABN的面积S△ABN=·|AB|·d=≥2,当k=0时,取等号,
∵△ABN的面积的最小值为4,
∴2=4,∴p=2,故抛物线C的方程为x2=4y.
相关资料
更多