- 数学选择性必修一3.1.1椭圆的定义及其标准方程教案 教案 65 次下载
- 数学选择性必修一3.1.2椭圆的简单几何性质教案 教案 58 次下载
- 数学选择性必修一3.2.1双曲线及其标准方程教案 教案 54 次下载
- 数学选择性必修一3.2.2双曲线的简单几何性质教案 教案 54 次下载
- 数学选择性必修一3.3.3圆锥曲线与方程教案 教案 54 次下载
人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.3 抛物线教案设计
展开【教学目标】
(一)、教学知识点
1、抛物线的定义
2、抛物线的四种标准方程形式及其对应的焦点和准线。
(二)、能力要求
1、掌握抛物线定义及其标准方程
2、理解标准方程中参数P的几何意义,能根据已知条件求抛物线的标准方程,并会由标准方程求相应准线方程,焦点坐标,画出其图形。
3、进一步掌握解析几何坐标法思想,会用坐标法建立抛物线的方程。
4、培养学生主动探索精神,提高学生分析、对比、概括等方面能力,渗透数形结合,函数方程分类讨论等数学思想。
(三)、德育渗透目标
根据圆锥曲线的统一定义,可以对学生进行运动、变化、对立、统一的辨证唯物主义思想教育。
【教学重点】
1、抛物线的定义
2、标准方程的建立
【教学难点】:
1、抛物线的标准方程的推导及四种图形。
2、抛物线定义及焦点、准线等知识的灵活运用。
【教学方法】
诱思探究法
通过回忆椭圆及双曲线定义引入抛物线并引导学生主动分析探索其标准方程等相关知识。
教学设计
一、课题导入
前面我们学习了椭圆和双曲线,我们共同顾一下椭圆和双曲线的第二定义,也即(如图示)平面内与一个定点F的距离和一条定直线L的距离的比是常数e的点M的轨迹,当0<e<1时是椭圆,当e=1时是双曲线。那么当e=1时它是什么曲线呢?
(1)同学们注意观察动画演示,回答问题。
如图示,把一根直尺固定在图上直线L的位置,把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点A,取绳长等于点到直角顶点C的长,并且把绳子的另一端固定在图上一定点F。用铅笔尖扣着绳子,使点A到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出一条曲线。
问题①笔尖(设为动点M)在运动过程中满足的条件是什么?
②此曲线是否为椭圆或一支双曲线?为什么?如果不是猜想它是什么?
(2)观察、讨论总结
①动点M在运动过程中满足的几何条件是到定点F的距离和它到定直线L的距离相等。
即|MF|=|MC|,即=e=1
②点M轨迹不是椭圆或双曲线,因为它不符合其定义,它就是我们曾经知道并且从今天开始深入研究的抛物线,这一节我们研究的课题是“抛物线及其标准方程”。
二、讲授新课
1、抛物线的定义
通过前面分析讨论,让学生自行下定义。
定义:平面内与一个定F和一条定直线L的距离相等的点的轨迹叫抛物线,(其中点F不在直线L上)。
2、抛物线标准方程的探究
(1)、回顾坐标法求平面内切点M的轨迹方程的方法步骤。
(2)、引导学生自行建立适当坐标系,求出抛物线的方程。(设定点F到定直线L的距离为常数p)
通过练习演板,表达学生的一些不同求法:
如:解法一:以L为Y轴,过点F垂直于L的直线为X轴,建点直角坐标系(如图示)则F (P,O)设动点M(X,Y),由抛物线定义得:,化简得y2=2px-p2 (p>0)
解法二:以定点F为原点,过点F 垂直于L的直线为X轴建立如图示坐标系,则F(0,0),L的方程为X=-P,设点M(x,y),由定义得化简得y2=2px-p2 (p>0)
解法三:建立直角坐标系X0Y,使X轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合,设|KF|=p(p>0),那么F(),准线l方程: ,设点M(x,y)为抛物线上任一点,由定义得:, 化简得: y2=2px(p>0)
(3)引导学生分析对比可以看出解法三的答案不仅形式较简单而且方程中一次项系数是焦点到准线距离的2倍,我们把这个方程叫做抛物线的标准方程。它表示的抛物线的焦点在x的正半轴上,坐标是(),它的准线方程是,抛物线开口方向向右。
(4)引导学生注意观察联想抛物线的不同位置。如焦点可在x轴的负半轴上或y轴的正半轴上或y轴的负半轴上,因此类似于椭圆或双曲线,抛物线标准方程有如下四种形式:
因此,求抛物线标准方程时,一要确定形式,二要求出参数P.
想一想:根据上表中抛物线的标准方程的不同 形式与图形、焦点坐标、准线方程对应关系,如何判断抛物线的焦点位置,开口方向?
结论:“三看” 抛物线的标准方程
(1)从形式上看:方程左边为二次式,系数为1;右边为一次项,系数为2p;
(2)从焦点、准线上看:焦点落在对称轴上,准线与对称轴垂直;且原点到焦点与准线的距离相等,均为.
(3)从一次项上看:一次项的变量x(或y)为对称轴;一次项系数的正负和开口方向一致,一次项系数为焦点非零坐标的4倍.
【例题讲解】
【例1】求适合下列条件的抛物线的标准方程
(1)焦点到准线距离为5;
(2)准线为的抛物线;
(3)焦点在直线上的抛物线;
(4)过点的抛物线。
【例2】已知抛物线的标准方程,求焦点坐标和准线方程.
【例3】点M与点F(4,0)的距离比它到直线l:x+6=0的距离小2,求点M的轨迹方程。
【课时小结】
1、理解掌握抛物线的定义,四种标准方程及参数p的几何意义
2、熟练抛物线标准方程与其焦点坐标及准线方程之间关系。
3、进一步掌握坐标法求方程的思想方法。
4、领会椭圆、抛物线、双曲线的对立统一关系。
【作业】课本63页第1,2题。
板书设计
2.3抛物线及其标准方程
1、课题引入(动画演示)
2、抛物线的定义
3、抛物线标准方程的推导(学生探讨
4、抛物线标准方程的四种形式(表格)
5、课题讲解
例1 例2 例3
6、课堂小结
7、课后作业
图形
标准方程
焦点坐标
准线方程
y2 = 2px (p>0)
(,0)
x= -
y2 = -2px (p>0)
(-,0)
x =
x2 = 2py (p>0)
(0,)
y=-
x2 = -2py (p>0)
(0,-)
y=
高中数学人教A版 (2019)选择性必修 第一册3.3 抛物线教学设计: 这是一份高中数学人教A版 (2019)选择性必修 第一册3.3 抛物线教学设计,共5页。
人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.3 抛物线优质课教案及反思: 这是一份人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.3 抛物线优质课教案及反思,共7页。教案主要包含了教学内容,教学目标,教学重点及难点,教学过程设计,目标检测设计,课堂小结,课后作业,教学反思等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.3 抛物线教案: 这是一份人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.3 抛物线教案,共6页。教案主要包含了教学目标,教学重点,学法与教学用具,教学过程,教学反思等内容,欢迎下载使用。