所属成套资源:2002-2019年深圳市数学中考真题分类汇编,共12个专题(含原卷版+解析版)
2002-2019年深圳市数学中考真题分类汇编:专题2 代数式和因式分解(解析版)
展开1.(深圳2002年3分)将多项式x2-3x-4分解因式,结果是【 度002】A.(x-4)(x+1) B.(x-4)(x-1) C.(x+4)(x+1) D.(x+4)(x-1)2.(深圳2004年3分)下列等式正确的是【 度002】A.(-x2)3= -x5 B.x8÷x4=x2 C.x3+x3=2x3 D.(xy)3=xy33.(深圳2007年3分)若,则的值是【 度002】A. B. C. D.4.(深圳2008年3分)下列运算正确的是【 度002】A. B. C. D.÷[来源:Z,xx,k.Com]5.(深圳2009年3分)用配方法将代数式a2+4a-5变形,结果正确的是【 度002】A.(a+2)2-1 B. (a+2)2-5 C. (a+2)2+4 D. (a+2)2-96.(深圳2010年学业3分)下列运算正确的是【 度002】A.(x-y)2=x2-y2 B.x2·y2 =(xy)4 C.x2y+xy2 =x3y3 D.x6÷x 2 =x47.(深圳2010年招生3分)计算的结果为【 度002】A.1 B . 2 C.一1 D.一2 8.(深圳2011年3分)下列运算正确的是【 度002】A. B. C. D. [来源:学。科。网]9.(2012广东深圳3分)下列运算正确的是【 】A. B. C. D.10.(2013年广东深圳3分)下列计算正确的是【 】A. B. C. D. 11.(2013年广东深圳3分)分式的值为0,则【 】A.x=-2 B. x=±2 C. x=2 D. x=012.(2014年广东深圳3分)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=【 】A. ﹣1 B. ﹣3 C. 3 D. 7[来源:Z&xx&k.Com]13.(2016年广东深圳3分)下列运算正确的是( )A.8a-a=8 B.(-a)4=a4C. D.=a2-b2[来源:Z,xx,k.Com]【答案】B【解析】试题分析:对于A,不是同类项,不能相加减;对于C,,故错。对于D,=,错误,只有D是正确的考点:整式的运算。学科&网14.(2018年深圳中考)下列运算正确的是( )A. B. C. D. 【答案】B【解析】【分析】分别根据同底数幂乘法法则、合并同类项法则、同底数幂除法法则、二次根式加减法法则逐项进行计算即可判断.【详解】A. ,故错误;B. ,正确;C. ,故错误;D. 不是同类二次根式,不能合并,故错误,故选B.【点睛】本题考查了同底数幂乘法、合并同类项、同底数幂除法、二次根式加减,熟练掌握各运算的运算法则是解题的关键.15.(2019年深圳中考)(3分)下列运算正确的是( )A.a2+a2=a4 B.a3•a4=a12 C.(a3)4=a12 D.(ab)2=ab2【分析】分别根据合并同类项的法则、同底数幂的乘法、幂的乘方以及积的乘方化简即可判断.【解答】解:A.a2+a2=2a2,故选项A不合题意;B.a3•a4=a7,故选项B不合题意;C.(a3)4=a12,故选项C符合题意;D.(ab)2=a2b2,故选项D不合题意.故选:C.【点评】本题主要考查了幂的运算法则,熟练掌握法则是解答本题的关键.16.(2019年深圳中考)(3分)定义一种新运算n•xn﹣1dx=an﹣bn,例如2xdx=k2﹣n2,若﹣x﹣2dx=﹣2,则m=( )A.﹣2 B.﹣ C.2 D.【分析】根据新运算列等式为m﹣1﹣(5m)﹣1=﹣2,解出即可.【解答】解:由题意得:m﹣1﹣(5m)﹣1=﹣2,﹣=﹣2,5﹣1=﹣10m,m=﹣,故选:B.【点评】本题考查了负整数指数幂和新定义,理解新定义,并根据新定义进行计算是本题的关键. 1.(深圳2004年3分)分解因式:x2-9y2+2x-6y= .2.(深圳2006年3分)化简: .3.(深圳2007年3分)分解因式: .4.(深圳2007年3分)若单项式与是同类项,则的值是 .5.(深圳2008年3分)分解因式: 6.(深圳2010年学业3分)分解因式:4x2-4= .7.(深圳2010年招生3分)分解因式: 度0028.(深圳2011年3分)分解因式: = .9.(2012广东深圳3分)分解因式: 10.(2013年广东深圳3分)分解因式: . 11.(2014年广东深圳3分)分解因式:2x2﹣8= .考点:提公因式法和应用公式法因式分解.12.(2015年广东深圳3分)因式分解: 。【答案】3(a+b)(a-b)【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=3(a+b)(a-b).考点:因式分解。学科*网13.(2016年广东深圳3分)分解因式:【答案】【解析】试题分析:首先提取公因式b,然后根据完全平方公式进行因式分解.原式==考点:(1)、因式分解;(2)、提取公因式法;(3)、完全平方公式14.(2017年深圳中考)因式分解:a3﹣4a= .【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).15.(2018年深圳中考)分解因式:__________.【答案】考点:因式分解-运用公式法.16.(2019年深圳中考)(3分)分解因式:ab2﹣a= a(b+1)(b﹣1) .【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 1. (深圳2003年10分)先化简再求值:,其中x=,y=2.(深圳2005年6分)先化简,再求值:()÷,其中x=20053.(深圳2008年7分)先化简代数式÷,然后选取一个合适的值,代入求值. 4.(深圳2010年学业6分)先化简分式,然后在0,1,2,3中选一个你认为合适的值,代入求值.5.(深圳2010年招生6分)已知,=2009 ,=2010 ,求代数式的值.6. (2012广东深圳6分)已知= -3,=2,求代数式的值.7.(2014广东深圳6分)[来源:Zxxk.Com]8.(2017年深圳中考)先化简,再求值:( +)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1考点:1.分式的化简求值;2.分式有意义的条件.9.(2018年深圳中考)先化简,再求值:,其中.【答案】,.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】,,,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.学科&网10.(2019年深圳中考)(6分)先化简(1﹣)÷,再将x=﹣1代入求值.【分析】直接利用分式的混合运算法则进而化简得出答案.【解答】解:原式=×=x+2,将x=﹣1代入得:原式=x+2=1.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.