所属成套资源:2002-2019年深圳市数学中考真题分类汇编,共12个专题(含原卷版+解析版)
2002-2019年深圳市数学中考真题分类汇编:专题5 数量和位置变化(解析版)
展开1.(深圳2002年3分)点P(-3,3)关于原点对称的点的坐标是【 度002】A.(-3,-3) B.(-3,3) C.(3,3) D.(3,-3)2.(深圳2008年3分)将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是【 度002】A. B. C. D.3.(深圳2010年学业3分)升旗时,旗子的高度h(米)与时间t(分)的函数图像大致为【 度002】 (深圳2010年学业3分)已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在 数轴上可表示为(阴影部分)【 度002】5.(2012广东深圳3分)已知点P(a+l,2a -3)关于x轴的对称点在第一象限,则a的取值范围是【 】A. B. C. D.[来源:学_科_网]6.(2013年广东深圳3分)在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则的值为【 】A.33 B.-33 C.-7 D.77.(2015年广东深圳3分)下列主视图正确的是( )【答案】A【解析】试题分析:从三视图的法则可得:下面为3个正方形,上面为1个正方形,且上面的正方形在中间.由前面往后面看,主视图为A考点:三视图8.(2017年深圳中考)下列哪一个是假命题( )A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.学&科网9.(2018年深圳中考)把函数向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D. 【答案】D【点睛】本题考查了一次函数的平移以及一次函数图象上点的坐标特征,熟知函数图象平移的法则是解答此题的关键. 1. (深圳2004年3分)在函数式y=中,自变量x的取值范围是 .(深圳2008年3分)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 1.(深圳2004年12分)直线y=-x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B。(1)求A、B、C三点的坐标;(3分)(2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;(4分)(3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离(可用含θ的三角函数式表示)。(5分)2. (深圳2005年9分)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)(1)(2分)求点A、E的坐标;(2)(2分)若y=过点A、E,求抛物线的解析式。(3)(5分)连结PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由。[来源:学科网]3. (深圳2006年10分)如图1,在平面直角坐标系中,点M在轴的正半轴上, ⊙M交轴于 A、B两点,交轴于C、D两点,且C为的中点,AE交轴于G点,若点A的坐标为(-2,0),AE(1)(3分)求点C的坐标. (2)(3分)连结MG、BC,求证:MG∥BC(3)(4分) 如图2,过点D作⊙M的切线,交轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化,若不变,求出比值;若变化,说明变化规律.4.(深圳2008年10分)如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.5. (深圳2009年9分)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由. 6. (深圳2010年学业9分)如图1,以点M(-1,,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=- x- 与⊙M相切于点H,交x轴于点E,交y轴于点F.[来源:学科网ZXXK](1)请直接写出OE、⊙M的半径r、CH的长;(3分)(2)如图2,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3分)(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数,始终满足MN·MK=,如果存在,请求出的值;如果不存在,请说明理由.(3分) 7.(深圳2010年招生10分)如图,抛物线与轴交于A、B两点,与轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5 , 2 ) ,连结BC、AD.( 1 ) ( 3 分)求C 点的坐标及抛物线的解析式;( 2 ) ( 3 分)将△BCH绕点B 按顺时针旋转900后再沿轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;( 3 ) ( 4 分)设过点E的直线AB交AB边于点P,交CD 边于点Q,问是否存在点P ,使直线PQ 分梯形ABCD的面积为1 : 3 两部分?若存在,求出P点坐标;若不存在,请说明理由.8. (2012广东深圳9分)如图,在平面直角坐标系中,直线:y=-2x+b (b≥0)的位置随b的不同取值而变化. (1)已知⊙M的圆心坐标为(4,2),半径为2.当b= 时,直线:y=-2x+b (b≥0)经过圆心M:当b= 时,直线:y=-2x+b(b≥0)与OM相切: (2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,9. (2013年广东深圳9分)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0)。(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图像与直线AB相交于C、D两点,若,求k的值。(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10)。 [来源:学+科+网]