专题13 三角形(解析版)-2021年中考数学真题分项汇编
展开
这是一份专题13 三角形(解析版)-2021年中考数学真题分项汇编,文件包含专题13三角形原卷版-2021年中考数学真题分项汇编江苏专用docx、专题13三角形解析版-2021年中考数学真题分项汇编江苏专用docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
专题13三角形一、求角度1.(2021·江苏盐城市)将一副三角板按如图方式重叠,则的度数为( )A. B. C. D.【答案】C【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【详解】解:如图所示:由题意可得,∠2=30°,∠3=45°则∠1=∠2+∠3=45°+30°=75°.故选:C. 此题主要考查了三角形的外角以及三角尺的特征,正确利用三角形外角的性质是解题关键.2.(2021·江苏宿迁市)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是( )
A.30° B.40° C.50° D.60°【答案】B【分析】由三角形的内角和可求∠ABC,根据角平分线可以求得∠ABD,由DE//AB,可得∠BDE=∠ABD即可.【详解】解:∵∠A+∠C=100°∴∠ABC=80°,∵BD平分∠BAC,∴∠ABD=40°,∵DE∥AB,∴∠BDE=∠ABD=40°,故答案为B. 本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.3.(2021·江苏扬州市)如图,点A、B、C、D、E在同一平面内,连接、、、、,若,则( )A. B. C. D.【答案】D【分析】连接BD,根据三角形内角和求出∠CBD+∠CDB,再利用四边形内角和减去∠CBD和∠CDB的和,即可得到结果.【详解】解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°-100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB=360°-80°=280°,故选D. 本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.4.(2021·江苏常州市)如图,在中,点D、E分别在、上,.若,则________.【答案】100【分析】先根据三角形内角和定理求出∠A=80°,再根据平行线的性质,求出,即可.【详解】解:∵,∴∠A=180°-40°-60°=80°,∵,∴180°-80°=100°.故答案是100. 本题主要考查三角形内角和定理以及平行线的性质,掌握两直线平行,同旁内角互补,是解题的关键.5.(2021·江苏泰州市)如图,木棒AB、CD与EF分别在G、H处用可旋转的螺丝铆住,∠EGB=100°,∠EHD=80°,将木棒AB绕点G逆时针旋转到与木棒CD平行的位置,则至少要旋转 ___°.【答案】20【分析】根据同位角相等两直线平行,得出当∠EHD=∠EGN=80°,MN//CD,再得出旋转角∠BGN的度数即可得出答案.【详解】解:过点G作MN,使∠EHD=∠EGN=80°,∴MN//CD,∵∠EGB=100°,∴∠BGN=∠EGB-∠EGN=100°-80°=20°,∴至少要旋转20°. 本题考查了平行线的判定,以及图形的旋转,熟练掌握相关的知识是解题的关键. 二、等腰三角形6.(2021·江苏扬州市)如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是( )A.2 B.3 C.4 D.5【答案】B【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点,故选:B. 本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.7.(2021·江苏苏州市)如图.在中,,.若,则______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A=∠AEF,再根据三角形的外角和定理得出∠A+∠AEF=∠CFE,求出∠A的度数,最后根据三角形的内角和定理求出∠B的度数即可.【详解】∵ AF=EF,∴ ∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴ ∠A=36°,∵ ∠C=90°,∠A+∠B+∠C=180°,∴ ∠B=180°-∠A-∠C=54°.故答案为:54°. 本题考查了三角形的外角和定理,等腰三角形的性质,掌握相关定理和性质是解题的关键.8.(2021·江苏南京市)如图,在四边形中,.设,则______(用含的代数式表示).【答案】【分析】由等腰的性质可得:∠ADB=,∠BDC=,两角相加即可得到结论.【详解】解:在△ABD中,AB=BD∴∠A=∠ADB= 在△BCD中,BC=BD∴∠C=∠BDC=∵ ∴ = ===故答案为:. 此题主要考查了等腰三角形的性质和三角形内角和定理,分别求出∠ADB=,∠BDC=是解答本题的关键. 三、全等三角形9.(2021·江苏无锡市)已知:如图,,相交于点O,,.求证:(1);(2).【答案】(1)见详解;(2)见详解【分析】(1)根据AAS,即可证明;(2)根据全等三角形的性质得OB=OC,进而即可得到结论.【详解】证明:(1)在与中,∵,∴(AAS);(2)∵,∴OB=OC,∴. 本题主要考查全等三角形的判定和性质定理以及等腰三角形的性质,掌握AAS判定三角形全等,是解题的关键.10.(2021·江苏盐城市)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是( )A. B. C. D.【答案】D【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知在中∴(SSS)∴∴就是的平分线故选:D 本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.11.(2021·江苏常州市)如图,B、F、C、E是直线l上的四点,.(1)求证:;(2)将沿直线l翻折得到.①用直尺和圆规在图中作出(保留作图痕迹,不要求写作法);②连接,则直线与l的位置关系是__________.【答案】(1)见详解;(2)①见详解;②平行【分析】(1)根据“SAS”即可证明;(2)①以点B为圆心,BA为半径画弧,以点C为圆心,CA 为半径画画弧,两个弧交于,连接B,C,即可;②过点作M⊥l,过点D 作DN⊥l,则M∥DN,且M=DN,证明四边形MND是平行四边形,即可得到结论.【详解】(1)证明:∵,∴BC=EF,∵,∴∠ABC=∠DEF,又∵,∴;(2)①如图所示,即为所求;②∥l,理由如下:∵,与关于直线l对称,∴,过点作M⊥l,过点D 作DN⊥l,则M∥DN,且M=DN,∴四边形MND是平行四边形,∴∥l,故答案是:平行. 本题主要考查全等三角形的判定和性质,平行四边形的判定和性质,添加辅助线,构造平行四边形是解题的关键.12.(2021·江苏徐州市)如图,为的直径,点在上,与交于点,,连接.求证:(1);(2)四边形是菱形.
【答案】(1)见解析;(2)见解析【分析】(1)由已知条件根据全的三角形的判定即可证明;(2)首先根据平行四边形的判定证明四边形是平行四边形,然后根据一组邻边相等的平行四边形是菱形即可证明.【详解】解:(1)在和中,∵,∴;(2)∵为的直径,∴,∵,∴,,∴∥,,∴四边形是平行四边形.∵,∴四边形是菱形. 本题考查了全等三角形的判定及性质、菱形的判定、圆的基础知识,掌握全等三角形的判定和特殊平行四边形的判定是解题的关键. 四、直角三角形13.(2021·江苏盐城市)如图,在Rt中,为斜边上的中线,若,则________.【答案】4【分析】根据直角三角形斜边中线等于斜边的一半即可解决问题;【详解】解:如图,∵△ABC是直角三角形,CD是斜边中线,∴CDAB,∵CD=2,∴AB=4,故答案为4. 本题考查直角三角形的性质,解题的关键是记住直角三角形斜边上的中线等于斜边的一半.14.(2021·江苏南通市)如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).【答案】.【分析】先作PC⊥AB于点C,然后利用勾股定理进行求解即可.【详解】解:如图,作PC⊥AB于点C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案为:. 此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.15.(2021·江苏宿迁市)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.【答案】12【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案.【详解】解:依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故答案为:12.. 此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.16.(2021·江苏南通市)如图,在中,,,以点A为圆心,长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为___________.【答案】.【分析】连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,设AC=BC=a,求出AF=CF=,由勾股定理求出CE,再由勾股定理求出BE的长即可得到结论.【详解】解:连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,如图,设AC=BC=a,∵ ∴, ∴, ∵ ∴ ∵ ∴ ∴ ∴ 设CE=x,则FE= 在Rt△AFE中, ∴ 解得,,(不符合题意,舍去)∴∵ ∴ ∴ ∴ 在Rt△BGE中, ∴ ∴ 故答案为:. 此题主要考查了等腰直角三角形的判定与性质,勾股定理与圆的基本概念等知识,正确作出辅助线构造直角三角形是解答此题的关键.
相关试卷
这是一份【中考真题汇编】2019-2023年 5年真题分项汇编 初中数学 专题13 解三角形与三角形全等(教师版+学生版).zip,文件包含中考真题汇编2019-2023年5年真题分项汇编专题13解三角形与三角形全等解析版docx、中考真题汇编2019-20235年真题分项汇编专题13解三角形与三角形全等学生版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
这是一份2020年江苏中考数学真题分项汇编专题13 图形的相似,共39页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
这是一份2020年江苏中考数学真题分项汇编专题09 三角形,共22页。试卷主要包含了如图,已知,,,则的度数是,如图,在中,已知,,垂足为,等内容,欢迎下载使用。