搜索
    上传资料 赚现金
    人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析)
    立即下载
    加入资料篮
    人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析)01
    人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析)02
    人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析)03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析)

    展开
    这是一份人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析),共23页。

    第10章 概率 章末测试(基础)考试时间:120分钟 满分:150分单选题(每题只有一个选择为正确答案,每题5分,8题共40分)1.(2022山东)某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则样本点共有(    )A.1个 B.2个 C.3个 D.4个2.(2022春·甘肃天水·高一校考期末)某射手的一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1.则此射手在一次射击中不够8环的概率为(    )A.0.4 B.0.3C.0.6 D.0.93.(2022·高一单元测试)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(    )A.至少有一个红球与都是黑球 B.至少有一个黑球与都是黑球C.至少有一个黑球与至少有1个红球 D.恰有1个黑球与恰有2个黑球4.(2022·高一单元测试)袋中有个白球,个黑球,若从中任意摸出个,则至少摸出个黑球的概率是(    )A. B. C. D.5.(2023春·辽宁沈阳·高一沈阳市第一二〇中学校考开学考试)抛掷一颗质地均匀的骰子,记事件为“向上的点数为1或4”,事件为“向上的点数为奇数”,则下列说法正确的是(    )A.与互斥 B.与对立C. D.6.(2022·高一课时练习)已知一个古典概型的样本空间和事件和,其中,,,,那么下列事件概率错误的是(    )A. B.C. D.7.(2022·高一单元测试)下列说法正确的个数有(    )(1)掷一枚质地均匀的的骰子一次,事件M=“出现偶数点”,N=“出现3点或 6 点”.则 和 相互独立;(2)袋中有大小质地相同的 3 个白球和 1 个红球.依次不放回取出 2 个球,则“两球同色”的概率是 ;(3)甲乙两名射击运动员进行射击比赛,甲的中靶率为0.8,乙的中标率为0.9,则“至少一人中靶”的概率为0.98;(4)柜子里有三双不同的鞋,如果从中随机地取出2只,那么“取出地鞋不成双”的概率是 ;A. B.2 C.3 D.48.(2022春·新疆乌鲁木齐·高一兵团二中校考期末)袋子中有大小、形状、质地完全相同的4个小球,分别写有“风”、“展”、“红”、“旗”四个字,若有放回地从袋子中任意摸出一个小球,直到写有“红”、“旗”的两个球都摸到就停止摸球.利用电脑随机产生1到4之间取整数值的随机数,用1,2,3,4分别代表“风”、“展”、“红”、“旗”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:411   231   324   412   112   443   213   144   331   123114   142   111   344   312   334   223   122   113   133由此可以估计,恰好在第三次就停止摸球的概率为(    )A. B. C. D.多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。4题共20分)9.(2022·高一单元测试)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.根据表中数据,下列结论正确的是顾客购买乙商品的概率最大 B.顾客同时购买乙和丙的概率约为0.2C.顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3 D.顾客仅购买1种商品的概率不大于0.310.(2022湖北十堰)从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”11.(2022·高一单元测试)下列说法正确的为(    )A.在袋子中放有2白2黑大小相同的4个小球,甲乙玩游戏的规则是从中不放回的依次随机摸出两个小球,如两球同色则甲获胜,否则乙获胜,那么甲获胜的概率为.B.做n次随机试验,事件A发生的频率可以估计事件A发生的概率C.必然事件的概率为1.D.在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型.12.(2022秋·河南南阳·高一校考期末)算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件“表示的四位数能被3整除”,“表示的四位数能被5整除”,则(    )A. B. C. D.三、填空题(每题5分,4题共20分)13.(2023山西)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为____________.14.(2022·高一单元测试)1742年6月7日,哥德巴赫在给大数学家欧拉的信中提出:任一大于2的偶数都可写成两个质数的和.这就是著名的“哥德巴赫猜想”,可简记为“1+1”.1966年,我国数学家陈景润证明了“1+2”,获得了该研究的世界最优成果.若在不超过30的所有质数中,随机选取两个不同的数,则两数之和不超过30的概率是________.15.(2022湖南)在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为________(表示的对立事件).16.(2022·高一单元测试)天气预报说,在今后的三天中,每一天下雨的概率均为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:488  932  812  458  989  431  257  390  024  556734  113  537  569  683  907  966  191  925  271据此估计,这三天中恰有两天下雨的概率近似为__________.四、解答题(17题10分,其余每题12分,6题共70分)17.(2022·高一课前预习)下表是某种油菜籽在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格(精确到小数点后三位);(2)估计该油菜籽发芽的概率是多少?18.(2022·高一单元测试)根据空气质量指数(为整数)的不同,可将空气质量分级如下表:对某城市一年(天)的空气质量进行监测,获得的数据按照区间、、、、、进行分组,得到频率分布直方图如图.(1)求直方图中的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有天的空气质量为良或轻微污染的概率.(结果用分数表示,已知,,,)19.(2022·高一课前预习)为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛.某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,清你根据尚未完成的频率分布表,解答下列问题:(1)完成频率分布表(直接写出结果),并作出频率分布直方图;(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.20.(2023海南)某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?21.(2022秋·福建莆田)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率;(2) “星队”在两轮活动中猜对3个成语的概率;(3) “星队”在两轮活动至少中猜对1个成语的概率;22.(2022秋·甘肃定西·)如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数.(3)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率. 顾客人数  商品甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××每批粒数251070130300150020003000发芽的粒数24960116269134717942688发芽的频率级别ⅠⅡⅢ1Ⅲ2Ⅳ1Ⅳ2Ⅴ状况优良轻微污染轻度污染中度污染中度重污染重度污染分组频数频率第1组60.5~70.50.26第2组70.5~80.517第3组80.5~90.5180.36第4组90.5~100.5合计50 1 满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232第10章 概率 章末测试(基础)考试时间:120分钟 满分:150分单选题(每题只有一个选择为正确答案,每题5分,8题共40分)1.(2022山东)某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则样本点共有(    )A.1个 B.2个 C.3个 D.4个【答案】C【解析】该生选报的所有可能情况是:数学和计算机、数学和航空模型、计算机和航空模型,所以样本点有3个.故选:C2.(2022春·甘肃天水·高一校考期末)某射手的一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1.则此射手在一次射击中不够8环的概率为(    )A.0.4 B.0.3C.0.6 D.0.9【答案】A【解析】因为某射手的一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1.所以在一次射击中不够8环的概率为,故选:A3.(2022·高一单元测试)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(    )A.至少有一个红球与都是黑球 B.至少有一个黑球与都是黑球C.至少有一个黑球与至少有1个红球 D.恰有1个黑球与恰有2个黑球【答案】D【解析】从装有2个红球和2个黑球的口袋内任取2个球,可能为:1红1黑、2红、2黑,对于A:至少有一个红球包括1红1黑、2红,与都是黑球是对立事件,不符合题意,故选项A不正确;对于B:至少有一个黑球包括1红1黑、2黑,与都是黑球不是互斥事件,不符合题意,故选项B不正确;对于C:至少有一个黑球包括1红1黑、2黑,至少有1个红球包括1红1黑、2红,这两个事件不是互斥事件,不符合题意,故选项C不正确;对于D:恰有1个黑球与恰有2个黑球是互斥事件而不是对立事件,符合题意,故选项D正确;故选:D.4.(2022·高一单元测试)袋中有个白球,个黑球,若从中任意摸出个,则至少摸出个黑球的概率是(    )A. B. C. D.【答案】D【解析】设个白球为、,个黑球为、,则有、、、、、共种等可能的结果,事件“至少摸出个黑球”所含有的基本事件为、、、、共种,根据古典概型的概率公式可知,事件“至少摸出个黑球”的概率是,故选:.5.(2023春·辽宁沈阳·高一沈阳市第一二〇中学校考开学考试)抛掷一颗质地均匀的骰子,记事件为“向上的点数为1或4”,事件为“向上的点数为奇数”,则下列说法正确的是(    )A.与互斥 B.与对立C. D.【答案】C【解析】与不互斥,当向上点数为1时,两者同时发生,也不对立,事件表示向上点数为之一,∴.故选:C.6.(2022·高一课时练习)已知一个古典概型的样本空间和事件和,其中,,,,那么下列事件概率错误的是(    )A. B.C. D.【答案】D【解析】对于选项A:,所以,故A正确;对于选项B:,故B正确;对于选项C:,所以,故C正确;对于选项D:,所以,故D错误.故选:D.7.(2022·高一单元测试)下列说法正确的个数有(    )(1)掷一枚质地均匀的的骰子一次,事件M=“出现偶数点”,N=“出现3点或 6 点”.则 和 相互独立;(2)袋中有大小质地相同的 3 个白球和 1 个红球.依次不放回取出 2 个球,则“两球同色”的概率是 ;(3)甲乙两名射击运动员进行射击比赛,甲的中靶率为0.8,乙的中标率为0.9,则“至少一人中靶”的概率为0.98;(4)柜子里有三双不同的鞋,如果从中随机地取出2只,那么“取出地鞋不成双”的概率是 ;A. B.2 C.3 D.4【答案】C【解析】对于(1):掷一枚质地均匀的的骰子一次,,,,即,故事件和相互独立;(1)正确;对于(2):袋中有大小质地相同的 3 个白球和 1 个红球.依次不放回取出 2 个球,若“两球同色”则都是白球,则“两球同色”的概率是 ,(2)错误;对于(3):“至少一人中靶”的概率为,(3)正确;对于(4):柜子里有三双不同的鞋,如果从中随机地取出2只,共有种,取出的鞋成双的只有3种,那么“取出的鞋不成双”有15-3=12种,所以“取出的鞋不成双”的概率是,(4)正确综上可知正确的有(1)(3)(4)故选:C8.(2022春·新疆乌鲁木齐·高一兵团二中校考期末)袋子中有大小、形状、质地完全相同的4个小球,分别写有“风”、“展”、“红”、“旗”四个字,若有放回地从袋子中任意摸出一个小球,直到写有“红”、“旗”的两个球都摸到就停止摸球.利用电脑随机产生1到4之间取整数值的随机数,用1,2,3,4分别代表“风”、“展”、“红”、“旗”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:411   231   324   412   112   443   213   144   331   123114   142   111   344   312   334   223   122   113   133由此可以估计,恰好在第三次就停止摸球的概率为(    )A. B. C. D.【答案】B【解析】由题得恰好在第三次就停止摸球的随机数有:324,443,334,共有3个.由古典概型的概率公式得恰好在第三次就停止摸球的概率为.故选:B多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。4题共20分)9.(2022·高一单元测试)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.根据表中数据,下列结论正确的是顾客购买乙商品的概率最大 B.顾客同时购买乙和丙的概率约为0.2C.顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3 D.顾客仅购买1种商品的概率不大于0.3【答案】BCD【解析】对于A,由于购买甲商品的顾客有685位,购买乙商品的顾客有515位,故A错误;对于B, 从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,顾客同时购买乙和丙的概率可以估计为,故B正确;对于C, 从统计表可以看出,在这1000位顾客中,有100位顾客同时的买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品, 顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为,故C正确;对于D, 从统计表可以看出,在这1000位顾客中,有183位顾客仅购买1种商品, 顾客仅购买1种商品的概率可以估计为,故D正确.故选:BCD.10.(2022湖北十堰)从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”【答案】AB【解析】“至少有一个黑球”中包含“都是黑球,A正确;“至少有一个黑球”与“至少有一个红球”可能同时发生,B正确;“恰好有一个黑球”与“恰好有两个黑球”不可能同时发生,C不正确;“至少有一个黑球”与“都是红球”不可能同时发生,D不正确.故选:AB.11.(2022·高一单元测试)下列说法正确的为(    )A.在袋子中放有2白2黑大小相同的4个小球,甲乙玩游戏的规则是从中不放回的依次随机摸出两个小球,如两球同色则甲获胜,否则乙获胜,那么甲获胜的概率为.B.做n次随机试验,事件A发生的频率可以估计事件A发生的概率C.必然事件的概率为1.D.在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型.【答案】BC【解析】逐一分析判断每一个选项:对于A,从4个小球中选取两个小球共有种方案,其中两个小球颜色相同的方案数为2种,故甲获胜的概率为,故A选项错误;对于B,随着事件次数的增加,频率会越来越接近概率,故事件A发生的频率可以估计事件A发生的概率,故B选项正确;对于C,必然事件一定发生,故其概率是1,故C选项正确;对于D,古典概型要求随机事件的结果可能性相等,在适宜的条件下种下一粒种子,观察它是否发芽,这个试验发芽与不发芽可能性不一定相等,故D选项错误;故选:BC.12.(2022秋·河南南阳·高一校考期末)算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件“表示的四位数能被3整除”,“表示的四位数能被5整除”,则(    )A. B. C. D.【答案】ACD【解析】只拨动一粒珠子至梁上,因此数字只表示1或5,四位数的个数是,能被3整除的数字1和5各出现2个,因此满足条件的四位数和个数是,所以,能被5带除的四位数个数为,,能被15带除的是能被3整除的四位数的个数是5,因此满足这个条件的四位数的个数是,概率为,.故选:ACD.三、填空题(每题5分,4题共20分)13.(2023山西)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为____________.【答案】3/5【解析】设该队员每次罚球的命中率为p(其中0<p<1),则依题意有1-p2=,p2=.又0<p<1,因此有p=.14.(2022·高一单元测试)1742年6月7日,哥德巴赫在给大数学家欧拉的信中提出:任一大于2的偶数都可写成两个质数的和.这就是著名的“哥德巴赫猜想”,可简记为“1+1”.1966年,我国数学家陈景润证明了“1+2”,获得了该研究的世界最优成果.若在不超过30的所有质数中,随机选取两个不同的数,则两数之和不超过30的概率是________.【答案】【解析】根据题意可知,不共有超过30的所有质数有2,3,5,7,11,13,17,19,23,29共10个,从中选取2个不同的数有种,和超过30的共有15种,所以两数之和不超过30的概率是.15.(2022湖南)在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为________(表示的对立事件).【答案】【解析】随机抛掷一颗骰子一次共有6中不同的结果,其中事件 “出现不大于4的偶数点”包括2,4两种结果,,事件 “出现小于5的点数”的对立事件,,,且事件和事件是互斥事件,.故答案为:16.(2022·高一单元测试)天气预报说,在今后的三天中,每一天下雨的概率均为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:488  932  812  458  989  431  257  390  024  556734  113  537  569  683  907  966  191  925  271据此估计,这三天中恰有两天下雨的概率近似为__________.【答案】0.3【解析】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,所求概率为.故答案为:0.3四、解答题(17题10分,其余每题12分,6题共70分)17.(2022·高一课前预习)下表是某种油菜籽在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格(精确到小数点后三位);(2)估计该油菜籽发芽的概率是多少?【答案】(1)答案见解析(2)【解析】(1)解:表格如下表所示:(2)解:由于每批种子发芽的频率稳定在附近,所以估计该油菜籽发芽的概率为.18.(2022·高一单元测试)根据空气质量指数(为整数)的不同,可将空气质量分级如下表:对某城市一年(天)的空气质量进行监测,获得的数据按照区间、、、、、进行分组,得到频率分布直方图如图.(1)求直方图中的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有天的空气质量为良或轻微污染的概率.(结果用分数表示,已知,,,)【答案】(1);(2)219;(3).【解析】(1)由图可知,解得;(2);(3)该城市一年中每天空气质量为良或轻微污染的概率为:,则空气质量不为良且不为轻微污染的概率为,一周至少有两天空气质量为良或轻微污染的概率为:.19.(2022·高一课前预习)为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛.某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,清你根据尚未完成的频率分布表,解答下列问题:(1)完成频率分布表(直接写出结果),并作出频率分布直方图;(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.【答案】(1)频率分布表见解析,频率分布直方图如图见解析(2)6人;【解析】(1)频率分布表如下:频率分布直方图如图.(2)获一等奖的概率约为0.04,所以获一等奖的人数估计为150×0.04=6(人).记这6人为A1,A2,B,C,D,E,其中,A1,A2为该班获一等奖的同学.从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,对应的样本空间={(A1,A2),(A1,B),(A1,C),(A1,D),(A1,E),(A2,B),(A2,C),(A2,D),(A2,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)},共有15个样本点.该班同学中恰有1人参加竞赛,包含8个样本点:(A1,B),(A1,C),(A1,D),(A1,E),(A2,B),(A2,C),(A2,D),(A2,E).所以该班同学中恰有1人参加竞赛的概率P=.20.(2023海南)某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?【答案】(1)中年人更倾向于选择自助餐;(2);(3)建议其选择自助餐.【解析】(1)由题知,老年人选择自助餐的频率,中年人选择自助餐的频率,青年人选择自助餐的频率,则,即中年人更倾向于选择自助餐.(2)点餐不满意的人群中,老年人1人(设为),中年人2人(设为,),青年人2人(设为,).从中选取2人,其基本事件有,,,,,,,,,,共10个基本事件,其中2人都是中年人仅有一个符合题意;故两人都是中年人的概率为.(3)由表可知,自助餐满意的均值为:.点餐满意的均值为:,故建议其选择自助餐.21.(2022秋·福建莆田)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率;(2) “星队”在两轮活动中猜对3个成语的概率;(3) “星队”在两轮活动至少中猜对1个成语的概率;【答案】(1);(2);(3).【解析】设A,B分别表示甲乙每轮猜对成语的事件,M0,M1,M2表示第一轮甲乙猜对0个、1个、2个成语的事件,N0,N1,N2表示第二轮甲乙猜对0个、1个、2个成语的事件,D0,D1,D2,D3,D4表示两轮猜对0个、1个、2个、3个、4个成语的事件.∵P(A)=,P()=1-=,P(B)=,P)=1-=,∴根据独立性的假定得:P(M0)=P(N0)=P()= P() P()= =,P(M1)=P(N1)=P()= P()+P() = +=,P(M2)=P(N2)=P(AB)=P(A)P(B)= =,(1)P(D2)=P(M2N0+M1N1+M0N2)= P(M2N0)+P(M1N1)+P(M0N2)=.+.+.=.(2)P(D3)=P(M1N2+M2N1)= P(M1N2)+P(M2N1)= .+.=.(3)P(D1+D2+D3+D4)=1-P(D0)=1-=.22.(2022秋·甘肃定西·)如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数.(3)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.【答案】(1),;(2),,;(3).【解析】(1)根据题意,的这一组的频率为,的这一组的频率为,的这一组的频率为,的这一组的频率为,的这一组的频率为,则这一组的频率为,其频数为;(2)这次竞赛的平均数为,一组的频率最大,人数最多,则众数为,分左右两侧的频率均为,则中位数为;(3)记“取出的人在同一分数段”为事件,因为之间的人数为,设为、、、,之间有人,设为、,从这人中选出人,有、、、、、、、、、、、、、、,共个基本事件,其中事件E包括、、、、、、,共个基本事件,则. 顾客人数  商品甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××每批粒数251070130300150020003000发芽的粒数24960116269134717942688发芽的频率每批粒数251070130300150020003000发芽的粒数24960116269134717942688发芽的频率级别ⅠⅡⅢ1Ⅲ2Ⅳ1Ⅳ2Ⅴ状况优良轻微污染轻度污染中度污染中度重污染重度污染分组频数频率第1组60.5~70.50.26第2组70.5~80.517第3组80.5~90.5180.36第4组90.5~100.5合计50 1 分组频数频率第1组60.5~70.5130.26第2组70.5~80.5170.34第3组80.5~90.5180.36第4组90.5~100.520.04合计501 满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版(2019)必修第二册第10章概率章末测试(基础)(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map