【全套精品专题】初中数学复习专题精讲湖南省长沙市九年级下册-2023-2024-2青竹湖周测卷3 综合检测(带答案)
展开一、选择题(8小题,每小题4分)
1.下列是无理数的是( )
A.πB.C.D.0
2.下列单项式中,的同类项是( )
A.B.C.D.
3.下列命题错误的是( )
A.对角线五互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分
C.矩形的对角线相等D.对角线相等的四边形是矩形
4.定义:对于给定的一次函数(a、b为常数,且),把形如的函数称为一次函数的“相依函数”,已知一次函数,若点在这个一次函数的“相依函数”图象上,则m的值是( )
A.1B.2C.3D.4
5.下列说法正确的是( )
A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线
C.三角形的高、中线、角平分线一定在三角形的内部D.锐角三角形的三条高交于一点
6.一个直角三角形的两直角边长分别为x,y,其面积为2,则x与y之间的关系用图象表示大致为( )
A.B.C.D.
7.如图,将线段AB平移到线段CD的位置,则的值为( )
A.4B.0
C.3D.
8.已知关于x的分式方程的解是非负数,
则m的取值范围是( )
A.B.C.且D.且
二、填空题(共6小题,每小题4分)
9.函数中自变量x的取值范围是__________.
10.分解因式:__________.
11.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△ABC与△DEF的面积之比为__________.
12.关于x的不等式组的解集为无解,则a的取值范围是为__________.
13.某园林绿化管理局为了考察树苗的成活率,于是进行了现场统计,表中记录了树苗的成活情况,则由此估计这种树苗成活的概率约为__________(结果精确到).
14.如图,AB、CD是半径为5的⊙O两条弦,,,MN是直径,AB⊥MN于E,CD⊥MN于点F,P为EF上任意一点,则的最小值为__________.
三、解答题(共10题)
15.(6分)计算:.
16.(6分)先化简,再求值:,其中.
17.(10分)某水果经销店每天从农场购进甲、乙两种时令水果进行销售,两种水果的进价和售价如下表:
已知乙种水果的进价比甲种水果高元/斤,水果经销店花费1400元购进甲种水果的重量和花费2400元购进乙种水果的重量一样.
(1)求a的值;
(2)水果经销店在“五一”这天购进两种水果共300斤,其中甲种水果不少于80斤且不超过140斤,在当天的促销活动中,店家将甲种水果降价元/斤进行销售,结果两种水果很快卖完.设销售甲种水果x斤,为了保证当天销售这两种水果总获利W的最小值不低于320元,求m的最大值.
18.(10分)在Rt△ABC中,,D是BC的中点,E是AD的中点,过点A作AF//BC交CE的延长线于点F.
(1)求证:四边形ADBF是菱形;
(2)若,菱形ADBF的面积为40.求菱形ADBF的周长.
19.(12分)定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.
(1)现有以下两个函数:①;②,其中,_______为函数的轴点函数.(填序号)
(2)函数(c为常数,)的图象与x轴交于点A,其轴点函数与x轴的另一交点为点B.若,求b的值.
(3)如图,函数(t为常数,)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数(t为常数,)的轴点函数的顶点P在矩形MNDE的边上,求n的值.
植树总数n
400
3500
7000
9000
14000
成活数m
369
3203
6335
8073
12628
成活的频率
品种
进价(元/斤)
售价(元/斤)
甲
a
5
乙
b
7
【全套精品专题】初中数学复习专题精讲湖南省长沙市 2023-2024-2望城区3月九下第一次月考联考: 这是一份【全套精品专题】初中数学复习专题精讲湖南省长沙市 2023-2024-2望城区3月九下第一次月考联考,共7页。试卷主要包含了不等式组的解集在数轴上可表示为等内容,欢迎下载使用。
【全套精品专题】初中数学复习专题精讲湖南省长沙市2023-2024青竹湖七年级下册入学综合检测(无答案): 这是一份【全套精品专题】初中数学复习专题精讲湖南省长沙市2023-2024青竹湖七年级下册入学综合检测(无答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
【全套精品专题】初中数学复习专题精讲湖南省长沙市七年级下册-2023-2024-2青竹湖周测卷1 综合检测(带答案): 这是一份【全套精品专题】初中数学复习专题精讲湖南省长沙市七年级下册-2023-2024-2青竹湖周测卷1 综合检测(带答案),文件包含9-2023-2024-2青一周测1docx、参考答案-9-2023-2024-2青一周测1docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。