还剩29页未读,
继续阅读
所属成套资源:沪科版七年级数学上册【专题特训卷】
成套系列资料,整套一键下载
沪科版七年级数学上册专题特训 专题2.4 整式的化简求值专项训练(50题)(原卷版+解析版)
展开
这是一份沪科版七年级数学上册专题特训 专题2.4 整式的化简求值专项训练(50题)(原卷版+解析版),共32页。
专题2.4 整式的化简求值专项训练(50题)【沪科版】考卷信息:本卷试题共50道大题,每大题2分,共计100分,限时100分钟,本卷试题针对性较高,覆盖面广,选题有深度,可衡量学生掌握整式化简求值计算的具体情况!一.解答题(共50小题)1.(2022秋•常宁市期末)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.2.(2022秋•龙岩期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是 .(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.3.(2022秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.4.(2022秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?5.(2022秋•老河口市期中)如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.6.(2022秋•简阳市期末)已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置 个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].求的值.10.先化简,后求值(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;(2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;(3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;(4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.12.(2022秋•沭阳县期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)根据下边的数值转换器,当输入的x与y满足时,请列式求出输出的结果.(4)若单项式与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)13.(2022秋•张家港市期中)化简或化简求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a,b=2时,﹣B+2A的值.③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式的值.④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中,y=﹣1”,甲同学把看错成;但计算结果仍正确,你说是怎么一回事?14.(2022•沙坪坝区校级一模)一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k型数”,若是,求出k;(2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.15.(2022秋•武昌区期中)对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子(a﹣b)(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.16.(2022秋•武城县期末)先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.17.(2022•威宁县一模)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.18.(2022秋•双流区期末)已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.19.(2022秋•赵县期末)有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x,y=﹣1.小明同学把“x”错看成“x”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.20.(2022秋•醴陵市校级期中)若单项式与的和仍是单项式,求m,n的值.21.(2022秋•岳麓区校级月考)先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.22.(2022秋•章贡区期末)先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y|=0.23.(2022秋•凤城市期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.24.(2022秋•锦江区校级期末)已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.25.(2022秋•泉州期中)已知多项式(a+3)x3﹣xb+x+a是关于x的二次三项式,求ab﹣ab的值.26.(2022秋•凤翔县期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x|与y2互为相反数时,求(1)中代数式的值.27.(2022秋•庄浪县期中)已知﹣2ambc2与4a3bnc2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.28.(2022秋•柳州期末)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.29.(2022秋•雨花区期末)先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=030.(2022秋•朝阳区校级期中)已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.31.(2022秋•雄县期中)阅读材料:对于任何数,我们规定符号的意义是ad﹣bc.例如:1×4﹣2×3=﹣2(1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,的值.32.(2022秋•成都期中)如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式a3﹣2b2﹣(a3﹣3b2)的值.33.(2022秋•梁平区期末)学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.34.(2022秋•金昌期中)小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.35.(2022秋•安仁县期末)有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.36.(2022秋•南县期中)有三个多项式A、B、C分别为:Ax2+x﹣1,Bx2+3x+1,Cx2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.37.(2022•路南区一模)已知代数式A=x2+xy+2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值;(3)若2A﹣B的值与x的取值无关,求y的值.38.(2022秋•阳谷县期末)化简求值:(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值(2)先化简,再求值:4xy﹣2(x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值39.(2022秋•海南区校级期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?40.(2022秋•越秀区校级期中)化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.41.(2022秋•和平区校级月考)已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y﹣2x)2=0,求该整式的值.42.(2022秋•黄陂区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.43.(2022秋•建湖县期中)莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)据此请你求出这个多项式A;(2)求出这两个多项式运算的正确结果.44.(2022秋•崇仁县校级期中)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.45.(2022秋•永登县期中)填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b,(1)4(2⊕5)= .(2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)= .46.(2022秋•乐陵市校级期中)(1)若代数式﹣4x6y与x2ny是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.(3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.47.(2022秋•江岸区校级月考)已知A=3x﹣2y﹣3,B=﹣4x+3y+2(1)求3A+2B;(2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为 .48.(2022秋•北仑区期末)老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:(1)求所捂的二次三项式;(2)若x,求所捂的二次三项式的值.49.(2022秋•沛县期中)(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为 ,用含有n的代数式表示任意一个奇数为 ;(答案直接填在题中横线上)(2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是 ;(填“是”或“否”,答案直接填在题中横线上)(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n=2(m﹣n);此时a+b和a﹣b同时为偶数.请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;(4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?(5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是 .(填“奇数”或“偶数”,答案直接填在题中横线上)50.(2022秋•金牛区校级期中)已知m、x、y满足(1)(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{x2y+[xy2+(x2y﹣3.475xy2)]﹣6.275xy2}的值. 专题2.4 整式的化简求值专项训练(50题)【沪科版】参考答案与试题解析考卷信息:本卷试题共50道大题,每大题2分,共计100分,限时100分钟,本卷试题针对性较高,覆盖面广,选题有深度,可衡量学生掌握整式化简求值计算的具体情况!一.解答题(共50小题)1.(2022秋•常宁市期末)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【分析】(1)根据题意确定出所挡的二次三项式即可;(2)把x的值代入计算即可求出值.【解答】解:(1)所挡的二次三项式为x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣1时,原式=1+8+4=13.2.(2022秋•龙岩期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是 ﹣(a﹣b)2 .(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用整体思想,把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2即可得到结果;(2)原式可化为3(x2﹣2y)﹣21,把x2﹣2y=4整体代入即可;(3)依据a﹣2b=3,2b﹣c=﹣5,c﹣d=10,即可得到a﹣c=﹣2,2b﹣d=5,整体代入进行计算即可.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.3.(2022秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求出即可.【解答】解:∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=6.25.4.(2022秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?【分析】(1)原式去括号合并即可得到结果;(2)由a与b互为倒数得到ab=1,代入(1)结果中计算求出b的值即可;(3)根据(1)的结果确定出b的值即可.【解答】解:(1)原式=3a2+6b2+6ab﹣12﹣3a2﹣6b2﹣4ab+4a+4=2ab+4a﹣8;(2)∵a,b互为倒数,∴ab=1,∴2+4a﹣8=0,解得:a=1.5,∴b;(3)由(1)得:原式=2ab+4a﹣8=(2b+4)a﹣8,由结果与a的值无关,得到2b+4=0,解得:b=﹣2.5.(2022秋•老河口市期中)如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.【分析】根据整式混合运算的法则把原式进行化简,再根据多项式的值与m无关得出m的值.先把整式m2+(4m﹣5)+m进行化简,再把m=﹣1代入进行计算即可.【解答】解:(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)=(2m﹣m+4m+6﹣1)x+6=(5m+5)x+6.∵它的值与x的取值无关,∴5m+5=0,∴m=﹣1.∵m2+(4m﹣5)+m=m2+5m﹣5∴当m=﹣1时,m2+(4m﹣5)+m=(﹣1)2+5×(﹣1)﹣5=﹣9.6.(2022秋•简阳市期末)已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.【分析】根据已知代数式的值与x无关确定出a与b的值,原式化简后将各自的值代入计算即可求出值.【解答】解:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由结果与x的取值无关,得到2﹣b=0,a+3=0,解得:a=﹣3,b=2,则原式=3A﹣6A+4B+12A﹣9B=9A﹣5B=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2=189+24+84=297.7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.【分析】(1)x与y去括号合并即可得到结果;(2)利用作差法判断x与y的大小,即可作出判断.【解答】解:(1)x=30+30a2﹣3a+3a2=33a2﹣3a+30,y=31﹣a+2a2﹣2a+31a2=33a2﹣3a+31;(2)天平会向左边倾斜,其理由是:∵x﹣y=(33a2﹣3a+30)﹣(33a2﹣3a+31)=﹣1<0,∴x<y,∴天平会向右边倾斜.8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置 n 个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?【分析】(1)根据题意确定出所求即可;(2)分n为偶数与奇数两种情况确定出符号即可;(3)分偶数与奇数求出算式值即可.【解答】解:(1)n;故答案为:n;(2)当n为偶数时,最后一个方格应填入减号;当n为奇数时,最后一个方格应填入加号;(3)当n为偶数时1+2﹣3+4﹣5+…+n﹣(n+1)=1﹣1﹣1…﹣1=1;当n为奇数时1+2﹣3+4﹣5+…﹣n+(n+1)=1﹣1﹣1﹣…﹣1+(n+1)=1n+1,所以当n为偶数时,算式值1为1,当n为奇数时,算式值为.9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].求的值.【分析】本题涉及新定义概念,解答时先搞清楚图形意义.由图形可得:x=x2,y=2x,z=﹣1;a=1﹣x2,b=x+1,c=2x2﹣x,d=3.再去括号,合并同类项即可.【解答】解:依题意图形可知:3(2x+5y+4z)=3(2x2+10x﹣4)=6x2+30x﹣12;﹣4[(3a+b)﹣(c﹣d)]=﹣4(3﹣3x2+x+1﹣2x2+x+3)=20x2﹣8x﹣28;∴可求得:=(20x2﹣8x﹣28)﹣(6x2+30x﹣12)=14x2﹣38x﹣16.10.先化简,后求值(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;(2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;(3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;(4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值;(3)原式变形后将已知等式代入计算即可求出值;(4)原式去括号合并得到最简结果,变形后将已知等式代入计算即可求出值.【解答】解:(1)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=5﹣5=0;(2)原式=3a2b﹣2ab2+2ab﹣3a2b+2ab+3ab2=ab2+4ab,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,即a=2,b=﹣3,则原式=18﹣24=﹣6;(3)∵a2+5ab=76,3b2+2ab=51,∴a2+11ab+9b2=(a2+5ab)+3(3b2+2ab)=76+153=229;(4)原式=3ab﹣2a+2ab﹣2b﹣3=5ab﹣2(a+b)﹣3,当ab=3,a+b=4时,原式=15﹣8﹣3=4.11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x+2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y+y3=x,当x=2010时,原式=2010.12.(2022秋•沭阳县期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)根据下边的数值转换器,当输入的x与y满足时,请列式求出输出的结果.(4)若单项式与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)【分析】(1)合并同类项即可;(2)去括号、合并同类项即可;(3)先根据已知条件,求出x、y的值,再代入转换器计算即可;(4)先根据已知条件,求出m、n的值,再对所给式子化简,然后把m、n的值代入化简后的式子,计算即可.【解答】解:(1)原式=2a2+3a;(2)原式=﹣2x2x﹣1x;(3)∵,∴x+1=0,y0,∴x=﹣1,y,输出的结果,当时,原式(1+1+1);(4)∵与﹣2xmy3是同类项,∴m=2,n=3,原式=m+3n﹣3mn+4m+2n﹣2mn=5m+5n﹣5mn,当m=2,n=3时,原式=5×2+5×3﹣5×3×2=﹣5.13.(2022秋•张家港市期中)化简或化简求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a,b=2时,﹣B+2A的值.③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式的值.④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中,y=﹣1”,甲同学把看错成;但计算结果仍正确,你说是怎么一回事?【分析】①先去括号,然后合并同类项得出最简整式.②先将﹣B+2A所示的整式化为最简,然后代入a和b的值即可得出答案.③与x的值无关则说明x项的系数为0,由此可得出a和b的值,将要求的代数式化为最简代入即可得出答案.④将整式化简可得出最简整式不含x项,由此可得为什么计算结果仍正确.【解答】解:①原式=3x2﹣6xy﹣[3x2﹣2y﹣6xy﹣2y],=3x2﹣6xy﹣3x2+2y+6xy+2y,=4y;②﹣B+2A=﹣(2ab﹣3b2+4a2)+2(3a2+b2﹣5ab),=2a2﹣12ab+5b2,当a,b=2时,原式=212()×(2)+5×22=32.5;③原式=(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),=(2﹣2b)x2+(3+a)x﹣6y+7,又因为所取值与x无关,可得a=﹣3,b=1,又:a3+b2,当a=﹣3,b=1时,原式a3+b2;④原式=(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3),=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3,=﹣2y3,因为结果中不含x所以与x取值无关.14.(2022•沙坪坝区校级一模)一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k型数”,若是,求出k;(2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.【分析】(1)由定义即可得到答案;(2)设m,由m是“3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,可得b=c,设m,由m﹣3是“﹣3型数”,分两种情况:(Ⅰ)d≥3时,m﹣3,可得2d﹣2x=3,因x、d是整数,2x、2d是偶数,而3是奇数,此种情况不存在;(Ⅱ)d<3时,若x=0,则m﹣3,可得3d﹣a=14无符合条件的解,若x≠0,则m﹣3,可得a+4x﹣3d=24①,a﹣2x+3d=0②,即有a+x=12,a+d=8,从而可得m是7551或6662.【解答】解:(1)∵1+7=4×(3﹣1),3+2(1﹣3),∴1731是“4型数”,3213不是“k型数”;(2)设m,∵m是“3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,∴a+b=3(c﹣d)且a+c=3(b﹣d),将两式相减整理得:b=c,∴m的十位与百位数字相同,设m,由m﹣3是“﹣3型数”,分两种情况:(Ⅰ)d≥3时,m﹣3,∵四位数m是“3型数”,∴a+x=3(x﹣d),∵m﹣3是“﹣3型数”,∴a+x=﹣3[x﹣(d﹣3)],∴3(x﹣d)=﹣3[x﹣(d﹣3)],整理化简得:2d﹣2x=3,∵x、d是整数,2x、2d是偶数,而3是奇数,∴2d﹣2x=3无整数解,此种情况不存在;(Ⅱ)d<3时,若x=0,则m﹣3,∵m﹣3是“﹣3型数”,∴a﹣1+9=﹣3[9﹣(d+7)],∴3d﹣a=14,∵d<3,且a、d是非负整数,∴3d﹣a=14无符合条件的解,若x≠0,则m﹣3,∵m﹣3是“﹣3型数”,∴a+x=﹣3[(x﹣1)﹣(d+7)],即a+4x﹣3d=24①,∵m是“3型数”,∴a+x=3(x﹣d),即a﹣2x+3d=0②,①+②化简得a+x=12,①+②×2化简得a+d=8,∴当d=1时,a=7,x=5,此时m=7551,当d=2时,a=6,x=6,此时m=6662.综上所述,满足条件的四位数m是7551或6662.15.(2022秋•武昌区期中)对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子(a﹣b)(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.【分析】(1)根据新的运算,先判断(a+b)奇偶性,再列式计算;(2)先判断(a﹣b+a+b﹣1)奇偶性,再列式计算;(3)先判断(a+a)奇偶性,列式计算结果为4|a|是偶数,求(a⊙a)⊙a转化为求4|a|⊙a,针对a的取值分情况讨论,再结合(a⊙a)⊙a=180﹣5a,确定a的取值.【解答】解:(1)∵a=2,b=﹣4,∴a+b=2﹣4=﹣2,为偶数,∴a⊙b=2|a+b|+|a﹣b|=2×|2﹣4|+|2﹣(﹣4)|=2×2+6=4+6=10;(2)∵a﹣b+a+b﹣1=2a﹣1,为奇数,∴(a﹣b)⊙(a+b﹣1)=2×|a﹣b+a+b﹣1|﹣|a﹣b﹣a﹣b+1|=7,∴2×|2a﹣1|﹣|﹣2b+1|=7,∵整数a,b,a>b>0,∴2a﹣1>0,﹣2b+1<0,∴2(2a﹣1)﹣(2b﹣1)=7,整理得2a﹣b=4,∴(a﹣b)(a+b﹣1)abab ;(3)∵a+a=2a一定为偶数,∴a⊙a=2|a+a|+|a﹣a|=4|a|是偶数,<1>当a为奇数时,(a⊙a)⊙a=4|a|⊙a=2|4|a|+a|﹣|4|a|﹣a|,①当a为负奇数时,得2|﹣4a+a|﹣|﹣4a﹣a|=﹣6a+5a=﹣a,∴﹣a=180﹣5a,解得a=45>0舍去;②当a为正奇数时,得2|4a+a|﹣|4a﹣a|=2×5a﹣3a=7a,∴7a=180﹣5a,解得a=15;<2>当a为偶数时,(a⊙a)⊙a=4|a|⊙a=2|4|a|+a|+|4|a|﹣a|,①当a为负偶数时,得2|﹣4a+a|+|﹣4a﹣a|=2×(﹣3a)+(﹣5a)=﹣11a,∴﹣11a=180﹣5a,解得a=﹣30<0,②当a为正偶数时,得2|4a+a|+|4a﹣a|=2×5a+3a=13a,∴13a=180﹣5a,解得a=10>0,综上所述:a的值为15或﹣30或10.16.(2022秋•武城县期末)先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.【分析】首先化简4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1;然后根据|x+1|+(y﹣2)2=0,可得:x+1=0,y﹣2=0,据此求出x、y的值各是多少,并代入化简后的算式即可.【解答】解:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1=4x2y﹣6xy+12xy﹣6+x2y+1=5x2y+6xy﹣5∵|x+1|+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得x=﹣1,y=2,∴原式=5×(﹣1)2×2+6×(﹣1)×2﹣5=﹣7.17.(2022•威宁县一模)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)由题意确定出A即可;(2)利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:(1)由题意得:A=2(﹣4a2+6ab+7)+(7a2﹣7ab)=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14;(2)∵|a+1|+(b﹣2)2=0,∴a=﹣1,b=2,则原式=﹣1﹣10+14=3.18.(2022秋•双流区期末)已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.【分析】(1)首先化简B﹣2A,然后把x=2,y代入B﹣2A,求出算式的值是多少即可.(2)首先根据|x﹣2a|+(y﹣3)2=0,可得x﹣2a=0,y﹣3=0;然后根据B﹣2A=a,求出a的值是多少即可.【解答】解:(1)∵A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,∴B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y当x=2,y时,B﹣2A=﹣7×2﹣5×()=﹣14+1=﹣13(2)∵|x﹣2a|+(y﹣3)2=0,∴x﹣2a=0,y﹣3=0,∴x=2a,y=3,∵B﹣2A=a,∴﹣7x﹣5y=﹣7×2a﹣5×3=﹣14a﹣15=a解得a=﹣1.19.(2022秋•赵县期末)有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x,y=﹣1.小明同学把“x”错看成“x”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3x2y+2x2y﹣5x2y2+2y2﹣5x2y﹣5y2+5x2y2=﹣3y2,结果不含x,且结果为y2倍数,则小明与小华错看x与y,结果也是正确的.20.(2022秋•醴陵市校级期中)若单项式与的和仍是单项式,求m,n的值.【分析】由题意知单项式与是同类项,据此得,解之可得.【解答】解:∵单项式与的和仍是单项式,∴单项式与是同类项,∴,解得:.21.(2022秋•岳麓区校级月考)先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=﹣6xy+2y2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2y2﹣2x2+15xy﹣6x2+xy=﹣8x2+10xy+2y2;∵|x+2|+(y﹣3)2=0,∴x=﹣2,y=3,∴原式=﹣8×(﹣2)2+10×(﹣2)×3+2×32=﹣32﹣60+18=﹣74.22.(2022秋•章贡区期末)先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y|=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=6x2﹣9xy﹣15x﹣3﹣6x2+6xy﹣6=﹣3xy﹣15x﹣9,由(x+2)2+|y|=0,得x=﹣2,y,当x=﹣2,y时,原式=﹣3×(﹣2)15×(﹣2)﹣9=4+30﹣9=25.23.(2022秋•凤城市期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.24.(2022秋•锦江区校级期末)已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.【分析】(1)根据题目中M、N的值可以解答本题;(2)先化简,然后根据多项式2M﹣N的值与字母x取值无关,可知x的系数为0,从而可以求得a的值.【解答】解:(1)∵M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1,∴N﹣(N﹣2M)=N﹣N+2M=2M=2(x2﹣ax﹣1)=2x2﹣2ax﹣2;(2)M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1,∴2M﹣N=2(x2﹣ax﹣1)﹣(2x2﹣ax﹣2x﹣1)=2x2﹣2ax﹣2﹣2x2+ax+2x+1=(2﹣a)x﹣1,∵多项式2M﹣N的值与字母x取值无关,∴2﹣a=0,得a=2,即a的值是2.25.(2022秋•泉州期中)已知多项式(a+3)x3﹣xb+x+a是关于x的二次三项式,求ab﹣ab的值.【分析】根据题意得出a+3=0、b=2,将a、b的值代入计算可得.【解答】解:根据题意得a+3=0、b=2,则a=﹣3、b=2,∴原式=(﹣3)2﹣(﹣3)×2=9+6=1526.(2022秋•凤翔县期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x|与y2互为相反数时,求(1)中代数式的值.【分析】(1)先化简,把B的值代入,即可求出答案;(2)根据相反数求出x、y的值,再代入求出即可.【解答】解:(1)∵A=x﹣2y,B=﹣x﹣4y+1,∴2(A+B)﹣(2A﹣B)=2A+2B﹣2A+B=3B=3(﹣x﹣4y+1)=﹣3x﹣12y+3;(2)∵|x|与y2互为相反数,∴|x|+y2=0,∴x0,y2=0,∴x,y=0,∴2(A+B)﹣(2A﹣B)=﹣3×()﹣12×0+3=4.27.(2022秋•庄浪县期中)已知﹣2ambc2与4a3bnc2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.【分析】所求式子合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:根据题意得:m=3,n=1,原式=2m2n﹣mn2=2×32×1﹣3×1=18﹣3=15.28.(2022秋•柳州期末)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.【分析】(1)根据题意可得A=2B+(7a2﹣7ab),由此可得出A的表达式.(2)根据非负性可得出a和b的值,代入可得出A的值.【解答】解:(1)由题意得:A=2(﹣4a2+6ab+7)+7a2﹣7ab=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14.(2)根据绝对值及平方的非负性可得:a=﹣1,b=2,故:A=﹣a2+5ab+14=3.29.(2022秋•雨花区期末)先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=0【分析】先根据两个非负数的和等于0,可知每一个非负数等于0,可求出m、n的值,再对所求代数式化简,然后再把m、n的值代入化简后的式子,计算即可.【解答】解:∵|m﹣1|+(n+2)2=0,∴m﹣1=0,n+2=0,∴m=1,n=﹣2,原式=﹣2mn+6m2﹣[m2﹣5mn+5m2+2mn]=﹣2mn+6m2﹣6m2+3mn=mn,当m=1,n=﹣2时,原式=1×(﹣2)=﹣2.30.(2022秋•朝阳区校级期中)已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.【分析】根据题意列出关系式,去括号合并得到结果,根据结果中不含二次项,求出m与n的值,代入所求式子中计算,即可求出值.【解答】解:(mx2﹣2xy+y)﹣(3x2+2nxy+3y)=mx2﹣2xy+y﹣3x2﹣2nxy﹣3y=(m﹣3)x2﹣(2+2n)xy﹣2y,∵两个多项式的差中不含二次项,∴,解得:,则m+3n=3+3×(﹣1)=0.31.(2022秋•雄县期中)阅读材料:对于任何数,我们规定符号的意义是ad﹣bc.例如:1×4﹣2×3=﹣2(1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,的值.【分析】(1)根据定义计算即可;(2)根据定义计算,化简后代入计算即可;【解答】解:(1)5×8﹣(﹣2)×6=52(2)2m2﹣4n+3m+2n=2m2+3m﹣2n∵|m+3|+(n﹣1)2=0,∴m=﹣3,n=1,∴原式=18﹣9﹣2=732.(2022秋•成都期中)如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式a3﹣2b2﹣(a3﹣3b2)的值.【分析】先去括号、合并同类项化简求出a、b的值,再化简代入计算即可;【解答】解:﹣2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(﹣2﹣2b)x2+(a+3)x﹣6y+7由题意:﹣2﹣2b=0,b=﹣1a+3=0,a=﹣3a3﹣2b2﹣(a3﹣3b2)a3﹣2b2a3+3b2a3+b2,当a=﹣3,b=﹣1时,原式(﹣27)+1.33.(2022秋•梁平区期末)学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3a2b﹣2ab2+4a﹣4a2b+6a+2ab2+a2b﹣1=10a﹣1,当a=﹣2时,原式=﹣21,化简结果中不含字母b,故最后的结果与b的取值无关,b=2017这个条件是多余的,则盈盈的说法是正确的.34.(2022秋•金昌期中)小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.【分析】因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B【解答】解:A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,则A+B=﹣3x2+5x+6+4x2﹣5x﹣6=x2.35.(2022秋•安仁县期末)有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.【分析】原式去括号合并后,把x=2”与“x=﹣2”都代入计算,即可作出判断.【解答】解:原式=2x4﹣4x3y﹣x2y2﹣2x4+4x3y+2y3+x2y2=2y3,当y=﹣1时,原式=﹣2.故“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的.36.(2022秋•南县期中)有三个多项式A、B、C分别为:Ax2+x﹣1,Bx2+3x+1,Cx2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.【分析】把A,B,C代入A﹣2B﹣C中,去括号合并得到最简结果,把x=﹣2代入计算即可求出值.【解答】解:∵Ax2+x﹣1,Bx2+3x+1,Cx2﹣x,∴A﹣2B﹣Cx2+x﹣1﹣x2﹣6x﹣2x2+x=﹣x2﹣4x﹣3,当x=﹣2时,原式=﹣4+8﹣3=1.37.(2022•路南区一模)已知代数式A=x2+xy+2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值;(3)若2A﹣B的值与x的取值无关,求y的值.【分析】(1)把A与B代入2A﹣B中,去括号合并即可得到结果;(2)把x与y的值代入2A﹣B计算即可得到结果;(3)由2A﹣B与x取值无关,确定出y的值即可.【解答】解:(1)2A﹣B=2(x2+xy+2y)﹣(2x2﹣2xy+x﹣1)=4xy+4y﹣x;(2)当x=﹣1,y=﹣2时,2A﹣B=4xy+4y﹣x=4×(﹣1)×(﹣2)+4×(﹣2)﹣(﹣1)=1;(3)由(1)可知2A﹣B=4xy+4y﹣x=(4y﹣1)x+4y若2A﹣B的值与x的取值无关,则4y﹣1=0,解得:y.38.(2022秋•阳谷县期末)化简求值:(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值(2)先化简,再求值:4xy﹣2(x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值【分析】(1)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.(2)原式去括号、合并同类项即可化简,再利用非负数的性质得出x、y的值,继而代入计算可得;(3)与x无关说明含x的项都被消去,由此可得出m的值.【解答】解:(1)原式=﹣2ab+6b2﹣6b2+ab﹣a2=﹣ab﹣a2,当a=﹣1、b=2时,原式=﹣(﹣1)×2﹣(﹣1)2=2﹣1=1;(2)原式=4xy﹣3x2+6xy﹣4y2+3x2﹣6xy=4xy﹣4y2,∵(x﹣3)2+|y+1|=0,∴x=3、y=﹣1,则原式=4×3×(﹣1)﹣4×(﹣1)2=﹣12﹣4=﹣16;(3)原式=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵结果与x的取值无关,∴2m﹣3=0,解得:m.39.(2022秋•海南区校级期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?【分析】原式去括号合并得到结果,即可做出判断.【解答】解:原式=7a3﹣6a3b+3a3+6a3b﹣10a3+3=3,由多项式化简可知:多项式的值跟a和b无关,无论多项式中a和b的值是多少,多项式的值都是3.40.(2022秋•越秀区校级期中)化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.【分析】(1)先去括号,然后再进行同类项的合并,最后将x=﹣2,y=﹣1代入;(2)根据题意列式,再利用去括号法则与合并同类项法则化简,再把x的值代入A计算即可.【解答】解:(1)(8x﹣7y)﹣3(4x﹣5y),=8x﹣7y﹣12x+15y,=﹣4x+8y,当x=﹣2,y=﹣1时,原式=﹣4×(﹣2)+8×(﹣1)=0.(2)由题意得:2(﹣2x2+3)﹣A=2x2+2x﹣7,∴A=﹣4x2+6﹣2x2﹣2x+7=﹣6x2﹣2x+13,当x=﹣1时,A=﹣6×(﹣1)2﹣2×(﹣1)+13=9.41.(2022秋•和平区校级月考)已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y﹣2x)2=0,求该整式的值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再由非负数的性质得出x、y的值,代入计算可得.【解答】解:原式=﹣5x2y﹣(2x2y﹣3xy+6x2y+3mx4)+2xy=﹣5x2y﹣2x2y+3xy﹣6x2y﹣3mx4+2xy=﹣13x2y+5xy﹣3mx4,∵整式不含x4项,∴﹣3m=0,即m=0,∴原式=﹣13x2y+5xy,∵|x+1|+(y﹣2x)2=0,∴x+1=0、y﹣2x=0,∴x=﹣1、y=﹣2,则原式=﹣13×(﹣1)2×(﹣2)+5×(﹣1)×(﹣2)=26+10=3642.(2022秋•黄陂区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.【分析】(1)先去括号、合并同类项化简即可;(2)根据当a取任何数值,A﹣2B的值是一个定值时,列出方程即可;【解答】解(1)4A﹣(3A﹣2B)=A+2B=4a2+5ab﹣2a﹣3;(2)A﹣2B=ab﹣2a+1=a(b﹣2)+1∵它的值是一个定值,∴b﹣2=0即b=2.43.(2022秋•建湖县期中)莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)据此请你求出这个多项式A;(2)求出这两个多项式运算的正确结果.【分析】(1)把b2+3b﹣1和2b2+3b+5相加,求得原多项式A;(2)用求得的多项式减去2b2﹣b﹣5,求得正确的结果.【解答】解:(1)根据题意得:A=(b2+3b﹣1)+(2b2+3b+5)=b2+3b﹣1+2b2+3b+5=3b2+6b+4,即:这个多项式A是3b2+6b+4;(2)(3b2+6b+4)﹣(2b2﹣3b﹣5)=3b2+6b+4﹣2b2+3b+5=b2+9b+9,即:算出正确的结果是b2+9b+9.44.(2022秋•崇仁县校级期中)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【分析】(1)根据题意得出三边的长度,再相加即可得;(2)由非负数的性质得出a、b的值,再代入计算即可得.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.45.(2022秋•永登县期中)填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b,(1)4(2⊕5)= 34 .(2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)= 2x2+4y2 .【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,整理即可得到结果.【解答】解:(1)根据题中的新定义得:2⊕5,则原式=434;故答案为:34;(2)∵A=x2+2xy+y2,B=﹣2xy+y2,∴A⊕Bx2﹣2xy+2y2,B⊕Ax2+2xy+2y2,则(A⊕B)+(B⊕A)=2x2+4y2.故答案为:2x2+4y246.(2022秋•乐陵市校级期中)(1)若代数式﹣4x6y与x2ny是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.(3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.【分析】(1)利用同类项定义求出n的值,代入原式计算即可得到结果;(2)原式去括号整理后,将已知等式代入计算即可求出值;(3)将A,B,C代入A+B+C中,去括号合并得到最简结果,即可做出判断.【解答】解:(1)∵代数式﹣4x6y与x2ny是同类项,∴2n=6,即n=3,则原式=﹣1;(2)原式=6x﹣4y﹣x+y﹣x+9y=4x+6y=2(2x+3y),当2x+3y=2015时,原式=4030;(3)∵A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,∴A+B+C=x3+3x2y﹣5xy2+6y3﹣1﹣6y3+5xy2+x2y﹣2x3+2+x3﹣4x2y+3=4,结果与x,y无关.47.(2022秋•江岸区校级月考)已知A=3x﹣2y﹣3,B=﹣4x+3y+2(1)求3A+2B;(2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为 我爱数学 .【分析】(1)把A与B代入3A+2B中,去括号合并即可得到结果;(2)根据题意解读密文,翻译即可.【解答】解:(1)根据题意得:3A+2B=3(3x﹣2y﹣3)+2(﹣4x+3y+2)=9x﹣6y﹣9﹣8x+6y+4=x﹣5;(2)根据题意可得密文为:I love maths,翻译成中文为:我爱数学,故答案为:我爱数学48.(2022秋•北仑区期末)老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:(1)求所捂的二次三项式;(2)若x,求所捂的二次三项式的值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)设所捂的二次三项式为A,则有A=x2﹣5x+1+3x2=4x2﹣5x+1;(2)当x时,原式=91.49.(2022秋•沛县期中)(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为 2n ,用含有n的代数式表示任意一个奇数为 2n﹣1 ;(答案直接填在题中横线上)(2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是 是 ;(填“是”或“否”,答案直接填在题中横线上)(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n=2(m﹣n);此时a+b和a﹣b同时为偶数.请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;(4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?(5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是 偶数 .(填“奇数”或“偶数”,答案直接填在题中横线上)【分析】(1)根据奇数与偶数的定义写出即可;(2)任意两个整数的和与这两个数的差是同时为奇数或同时为偶数;(3)分①设a=2m,b=2n,②设a=2m,b=2n+1,③设a=2m+1,b=2n,④设a=2m+1,b=2n+1四种情况讨论可证明结论;(4)由(3)的结论得出;(5)应用第(2)、(3)、(4)的结论完成.【解答】解:(1)用含有n的代数式表示任意一个偶数为2n,用含有n的代数式表示任意一个奇数为2n+1或2n﹣1(奇数的表达式写出一个即可);(2)任意两个整数的和与这两个数的差是同时为奇数或同时为偶数;(3)②设a=2m,b=2n+1,则:a+b=2m+2n+1=2(m+n)+1a﹣b=2m﹣(2n+1)=2(m﹣n)﹣1,此时a+b和a﹣b同时为奇数;③设a=2m+1,b=2n,则:a+b=2m+1+2n=2(m+n)+1a﹣b=2m+1﹣2n=2(m﹣n)+1,此时a+b和a﹣b同时为奇数;④设a=2m+1,b=2n+1,则:a+b=2m+1+2n+1=2(m+n+1)a﹣b=(2m+1)﹣(2n+1)=2(m﹣n),此时a+b和a﹣b同时为偶数,由此可见:a+b和a﹣b要么同时为奇数,要么同时为偶数,即a+b和a﹣b的奇偶性相同; (4)由(3)的结论:﹣a+b=b﹣a与a+b=b+a奇偶性相同,﹣a﹣b=﹣b﹣a与a﹣b=﹣b+a奇偶性相同,因此﹣a+b、﹣a﹣b、a+b、a﹣b“同奇”或“同偶”;(5)在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是偶数.故答案为:2n,2n+1或2n﹣1;是;偶数.50.(2022秋•金牛区校级期中)已知m、x、y满足(1)(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{x2y+[xy2+(x2y﹣3.475xy2)]﹣6.275xy2}的值.【分析】利用非负数的性质及同类项定义分别求出x,y,m的值,原式去括号合并后代入计算即可求出值.【解答】解:∵(1)(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,∴x=5,m=0,y+1=3,即y=2,则原式=0.375x2yx2yxy2x2y+3.475xy2+6.275xy2=x2y+10xy2=50+200=250.
专题2.4 整式的化简求值专项训练(50题)【沪科版】考卷信息:本卷试题共50道大题,每大题2分,共计100分,限时100分钟,本卷试题针对性较高,覆盖面广,选题有深度,可衡量学生掌握整式化简求值计算的具体情况!一.解答题(共50小题)1.(2022秋•常宁市期末)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.2.(2022秋•龙岩期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是 .(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.3.(2022秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.4.(2022秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?5.(2022秋•老河口市期中)如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.6.(2022秋•简阳市期末)已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置 个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].求的值.10.先化简,后求值(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;(2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;(3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;(4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.12.(2022秋•沭阳县期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)根据下边的数值转换器,当输入的x与y满足时,请列式求出输出的结果.(4)若单项式与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)13.(2022秋•张家港市期中)化简或化简求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a,b=2时,﹣B+2A的值.③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式的值.④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中,y=﹣1”,甲同学把看错成;但计算结果仍正确,你说是怎么一回事?14.(2022•沙坪坝区校级一模)一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k型数”,若是,求出k;(2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.15.(2022秋•武昌区期中)对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子(a﹣b)(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.16.(2022秋•武城县期末)先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.17.(2022•威宁县一模)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.18.(2022秋•双流区期末)已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.19.(2022秋•赵县期末)有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x,y=﹣1.小明同学把“x”错看成“x”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.20.(2022秋•醴陵市校级期中)若单项式与的和仍是单项式,求m,n的值.21.(2022秋•岳麓区校级月考)先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.22.(2022秋•章贡区期末)先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y|=0.23.(2022秋•凤城市期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.24.(2022秋•锦江区校级期末)已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.25.(2022秋•泉州期中)已知多项式(a+3)x3﹣xb+x+a是关于x的二次三项式,求ab﹣ab的值.26.(2022秋•凤翔县期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x|与y2互为相反数时,求(1)中代数式的值.27.(2022秋•庄浪县期中)已知﹣2ambc2与4a3bnc2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.28.(2022秋•柳州期末)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.29.(2022秋•雨花区期末)先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=030.(2022秋•朝阳区校级期中)已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.31.(2022秋•雄县期中)阅读材料:对于任何数,我们规定符号的意义是ad﹣bc.例如:1×4﹣2×3=﹣2(1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,的值.32.(2022秋•成都期中)如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式a3﹣2b2﹣(a3﹣3b2)的值.33.(2022秋•梁平区期末)学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.34.(2022秋•金昌期中)小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.35.(2022秋•安仁县期末)有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.36.(2022秋•南县期中)有三个多项式A、B、C分别为:Ax2+x﹣1,Bx2+3x+1,Cx2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.37.(2022•路南区一模)已知代数式A=x2+xy+2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值;(3)若2A﹣B的值与x的取值无关,求y的值.38.(2022秋•阳谷县期末)化简求值:(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值(2)先化简,再求值:4xy﹣2(x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值39.(2022秋•海南区校级期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?40.(2022秋•越秀区校级期中)化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.41.(2022秋•和平区校级月考)已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y﹣2x)2=0,求该整式的值.42.(2022秋•黄陂区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.43.(2022秋•建湖县期中)莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)据此请你求出这个多项式A;(2)求出这两个多项式运算的正确结果.44.(2022秋•崇仁县校级期中)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.45.(2022秋•永登县期中)填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b,(1)4(2⊕5)= .(2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)= .46.(2022秋•乐陵市校级期中)(1)若代数式﹣4x6y与x2ny是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.(3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.47.(2022秋•江岸区校级月考)已知A=3x﹣2y﹣3,B=﹣4x+3y+2(1)求3A+2B;(2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为 .48.(2022秋•北仑区期末)老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:(1)求所捂的二次三项式;(2)若x,求所捂的二次三项式的值.49.(2022秋•沛县期中)(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为 ,用含有n的代数式表示任意一个奇数为 ;(答案直接填在题中横线上)(2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是 ;(填“是”或“否”,答案直接填在题中横线上)(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n=2(m﹣n);此时a+b和a﹣b同时为偶数.请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;(4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?(5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是 .(填“奇数”或“偶数”,答案直接填在题中横线上)50.(2022秋•金牛区校级期中)已知m、x、y满足(1)(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{x2y+[xy2+(x2y﹣3.475xy2)]﹣6.275xy2}的值. 专题2.4 整式的化简求值专项训练(50题)【沪科版】参考答案与试题解析考卷信息:本卷试题共50道大题,每大题2分,共计100分,限时100分钟,本卷试题针对性较高,覆盖面广,选题有深度,可衡量学生掌握整式化简求值计算的具体情况!一.解答题(共50小题)1.(2022秋•常宁市期末)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【分析】(1)根据题意确定出所挡的二次三项式即可;(2)把x的值代入计算即可求出值.【解答】解:(1)所挡的二次三项式为x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣1时,原式=1+8+4=13.2.(2022秋•龙岩期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是 ﹣(a﹣b)2 .(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用整体思想,把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2即可得到结果;(2)原式可化为3(x2﹣2y)﹣21,把x2﹣2y=4整体代入即可;(3)依据a﹣2b=3,2b﹣c=﹣5,c﹣d=10,即可得到a﹣c=﹣2,2b﹣d=5,整体代入进行计算即可.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.3.(2022秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求出即可.【解答】解:∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=6.25.4.(2022秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?【分析】(1)原式去括号合并即可得到结果;(2)由a与b互为倒数得到ab=1,代入(1)结果中计算求出b的值即可;(3)根据(1)的结果确定出b的值即可.【解答】解:(1)原式=3a2+6b2+6ab﹣12﹣3a2﹣6b2﹣4ab+4a+4=2ab+4a﹣8;(2)∵a,b互为倒数,∴ab=1,∴2+4a﹣8=0,解得:a=1.5,∴b;(3)由(1)得:原式=2ab+4a﹣8=(2b+4)a﹣8,由结果与a的值无关,得到2b+4=0,解得:b=﹣2.5.(2022秋•老河口市期中)如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.【分析】根据整式混合运算的法则把原式进行化简,再根据多项式的值与m无关得出m的值.先把整式m2+(4m﹣5)+m进行化简,再把m=﹣1代入进行计算即可.【解答】解:(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)=(2m﹣m+4m+6﹣1)x+6=(5m+5)x+6.∵它的值与x的取值无关,∴5m+5=0,∴m=﹣1.∵m2+(4m﹣5)+m=m2+5m﹣5∴当m=﹣1时,m2+(4m﹣5)+m=(﹣1)2+5×(﹣1)﹣5=﹣9.6.(2022秋•简阳市期末)已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.【分析】根据已知代数式的值与x无关确定出a与b的值,原式化简后将各自的值代入计算即可求出值.【解答】解:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由结果与x的取值无关,得到2﹣b=0,a+3=0,解得:a=﹣3,b=2,则原式=3A﹣6A+4B+12A﹣9B=9A﹣5B=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2=189+24+84=297.7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.【分析】(1)x与y去括号合并即可得到结果;(2)利用作差法判断x与y的大小,即可作出判断.【解答】解:(1)x=30+30a2﹣3a+3a2=33a2﹣3a+30,y=31﹣a+2a2﹣2a+31a2=33a2﹣3a+31;(2)天平会向左边倾斜,其理由是:∵x﹣y=(33a2﹣3a+30)﹣(33a2﹣3a+31)=﹣1<0,∴x<y,∴天平会向右边倾斜.8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置 n 个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?【分析】(1)根据题意确定出所求即可;(2)分n为偶数与奇数两种情况确定出符号即可;(3)分偶数与奇数求出算式值即可.【解答】解:(1)n;故答案为:n;(2)当n为偶数时,最后一个方格应填入减号;当n为奇数时,最后一个方格应填入加号;(3)当n为偶数时1+2﹣3+4﹣5+…+n﹣(n+1)=1﹣1﹣1…﹣1=1;当n为奇数时1+2﹣3+4﹣5+…﹣n+(n+1)=1﹣1﹣1﹣…﹣1+(n+1)=1n+1,所以当n为偶数时,算式值1为1,当n为奇数时,算式值为.9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].求的值.【分析】本题涉及新定义概念,解答时先搞清楚图形意义.由图形可得:x=x2,y=2x,z=﹣1;a=1﹣x2,b=x+1,c=2x2﹣x,d=3.再去括号,合并同类项即可.【解答】解:依题意图形可知:3(2x+5y+4z)=3(2x2+10x﹣4)=6x2+30x﹣12;﹣4[(3a+b)﹣(c﹣d)]=﹣4(3﹣3x2+x+1﹣2x2+x+3)=20x2﹣8x﹣28;∴可求得:=(20x2﹣8x﹣28)﹣(6x2+30x﹣12)=14x2﹣38x﹣16.10.先化简,后求值(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;(2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;(3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;(4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值;(3)原式变形后将已知等式代入计算即可求出值;(4)原式去括号合并得到最简结果,变形后将已知等式代入计算即可求出值.【解答】解:(1)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=5﹣5=0;(2)原式=3a2b﹣2ab2+2ab﹣3a2b+2ab+3ab2=ab2+4ab,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,即a=2,b=﹣3,则原式=18﹣24=﹣6;(3)∵a2+5ab=76,3b2+2ab=51,∴a2+11ab+9b2=(a2+5ab)+3(3b2+2ab)=76+153=229;(4)原式=3ab﹣2a+2ab﹣2b﹣3=5ab﹣2(a+b)﹣3,当ab=3,a+b=4时,原式=15﹣8﹣3=4.11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x+2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y+y3=x,当x=2010时,原式=2010.12.(2022秋•沭阳县期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)根据下边的数值转换器,当输入的x与y满足时,请列式求出输出的结果.(4)若单项式与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)【分析】(1)合并同类项即可;(2)去括号、合并同类项即可;(3)先根据已知条件,求出x、y的值,再代入转换器计算即可;(4)先根据已知条件,求出m、n的值,再对所给式子化简,然后把m、n的值代入化简后的式子,计算即可.【解答】解:(1)原式=2a2+3a;(2)原式=﹣2x2x﹣1x;(3)∵,∴x+1=0,y0,∴x=﹣1,y,输出的结果,当时,原式(1+1+1);(4)∵与﹣2xmy3是同类项,∴m=2,n=3,原式=m+3n﹣3mn+4m+2n﹣2mn=5m+5n﹣5mn,当m=2,n=3时,原式=5×2+5×3﹣5×3×2=﹣5.13.(2022秋•张家港市期中)化简或化简求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a,b=2时,﹣B+2A的值.③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式的值.④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中,y=﹣1”,甲同学把看错成;但计算结果仍正确,你说是怎么一回事?【分析】①先去括号,然后合并同类项得出最简整式.②先将﹣B+2A所示的整式化为最简,然后代入a和b的值即可得出答案.③与x的值无关则说明x项的系数为0,由此可得出a和b的值,将要求的代数式化为最简代入即可得出答案.④将整式化简可得出最简整式不含x项,由此可得为什么计算结果仍正确.【解答】解:①原式=3x2﹣6xy﹣[3x2﹣2y﹣6xy﹣2y],=3x2﹣6xy﹣3x2+2y+6xy+2y,=4y;②﹣B+2A=﹣(2ab﹣3b2+4a2)+2(3a2+b2﹣5ab),=2a2﹣12ab+5b2,当a,b=2时,原式=212()×(2)+5×22=32.5;③原式=(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),=(2﹣2b)x2+(3+a)x﹣6y+7,又因为所取值与x无关,可得a=﹣3,b=1,又:a3+b2,当a=﹣3,b=1时,原式a3+b2;④原式=(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3),=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3,=﹣2y3,因为结果中不含x所以与x取值无关.14.(2022•沙坪坝区校级一模)一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k型数”,若是,求出k;(2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.【分析】(1)由定义即可得到答案;(2)设m,由m是“3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,可得b=c,设m,由m﹣3是“﹣3型数”,分两种情况:(Ⅰ)d≥3时,m﹣3,可得2d﹣2x=3,因x、d是整数,2x、2d是偶数,而3是奇数,此种情况不存在;(Ⅱ)d<3时,若x=0,则m﹣3,可得3d﹣a=14无符合条件的解,若x≠0,则m﹣3,可得a+4x﹣3d=24①,a﹣2x+3d=0②,即有a+x=12,a+d=8,从而可得m是7551或6662.【解答】解:(1)∵1+7=4×(3﹣1),3+2(1﹣3),∴1731是“4型数”,3213不是“k型数”;(2)设m,∵m是“3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,∴a+b=3(c﹣d)且a+c=3(b﹣d),将两式相减整理得:b=c,∴m的十位与百位数字相同,设m,由m﹣3是“﹣3型数”,分两种情况:(Ⅰ)d≥3时,m﹣3,∵四位数m是“3型数”,∴a+x=3(x﹣d),∵m﹣3是“﹣3型数”,∴a+x=﹣3[x﹣(d﹣3)],∴3(x﹣d)=﹣3[x﹣(d﹣3)],整理化简得:2d﹣2x=3,∵x、d是整数,2x、2d是偶数,而3是奇数,∴2d﹣2x=3无整数解,此种情况不存在;(Ⅱ)d<3时,若x=0,则m﹣3,∵m﹣3是“﹣3型数”,∴a﹣1+9=﹣3[9﹣(d+7)],∴3d﹣a=14,∵d<3,且a、d是非负整数,∴3d﹣a=14无符合条件的解,若x≠0,则m﹣3,∵m﹣3是“﹣3型数”,∴a+x=﹣3[(x﹣1)﹣(d+7)],即a+4x﹣3d=24①,∵m是“3型数”,∴a+x=3(x﹣d),即a﹣2x+3d=0②,①+②化简得a+x=12,①+②×2化简得a+d=8,∴当d=1时,a=7,x=5,此时m=7551,当d=2时,a=6,x=6,此时m=6662.综上所述,满足条件的四位数m是7551或6662.15.(2022秋•武昌区期中)对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子(a﹣b)(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.【分析】(1)根据新的运算,先判断(a+b)奇偶性,再列式计算;(2)先判断(a﹣b+a+b﹣1)奇偶性,再列式计算;(3)先判断(a+a)奇偶性,列式计算结果为4|a|是偶数,求(a⊙a)⊙a转化为求4|a|⊙a,针对a的取值分情况讨论,再结合(a⊙a)⊙a=180﹣5a,确定a的取值.【解答】解:(1)∵a=2,b=﹣4,∴a+b=2﹣4=﹣2,为偶数,∴a⊙b=2|a+b|+|a﹣b|=2×|2﹣4|+|2﹣(﹣4)|=2×2+6=4+6=10;(2)∵a﹣b+a+b﹣1=2a﹣1,为奇数,∴(a﹣b)⊙(a+b﹣1)=2×|a﹣b+a+b﹣1|﹣|a﹣b﹣a﹣b+1|=7,∴2×|2a﹣1|﹣|﹣2b+1|=7,∵整数a,b,a>b>0,∴2a﹣1>0,﹣2b+1<0,∴2(2a﹣1)﹣(2b﹣1)=7,整理得2a﹣b=4,∴(a﹣b)(a+b﹣1)abab ;(3)∵a+a=2a一定为偶数,∴a⊙a=2|a+a|+|a﹣a|=4|a|是偶数,<1>当a为奇数时,(a⊙a)⊙a=4|a|⊙a=2|4|a|+a|﹣|4|a|﹣a|,①当a为负奇数时,得2|﹣4a+a|﹣|﹣4a﹣a|=﹣6a+5a=﹣a,∴﹣a=180﹣5a,解得a=45>0舍去;②当a为正奇数时,得2|4a+a|﹣|4a﹣a|=2×5a﹣3a=7a,∴7a=180﹣5a,解得a=15;<2>当a为偶数时,(a⊙a)⊙a=4|a|⊙a=2|4|a|+a|+|4|a|﹣a|,①当a为负偶数时,得2|﹣4a+a|+|﹣4a﹣a|=2×(﹣3a)+(﹣5a)=﹣11a,∴﹣11a=180﹣5a,解得a=﹣30<0,②当a为正偶数时,得2|4a+a|+|4a﹣a|=2×5a+3a=13a,∴13a=180﹣5a,解得a=10>0,综上所述:a的值为15或﹣30或10.16.(2022秋•武城县期末)先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.【分析】首先化简4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1;然后根据|x+1|+(y﹣2)2=0,可得:x+1=0,y﹣2=0,据此求出x、y的值各是多少,并代入化简后的算式即可.【解答】解:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1=4x2y﹣6xy+12xy﹣6+x2y+1=5x2y+6xy﹣5∵|x+1|+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得x=﹣1,y=2,∴原式=5×(﹣1)2×2+6×(﹣1)×2﹣5=﹣7.17.(2022•威宁县一模)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)由题意确定出A即可;(2)利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:(1)由题意得:A=2(﹣4a2+6ab+7)+(7a2﹣7ab)=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14;(2)∵|a+1|+(b﹣2)2=0,∴a=﹣1,b=2,则原式=﹣1﹣10+14=3.18.(2022秋•双流区期末)已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.【分析】(1)首先化简B﹣2A,然后把x=2,y代入B﹣2A,求出算式的值是多少即可.(2)首先根据|x﹣2a|+(y﹣3)2=0,可得x﹣2a=0,y﹣3=0;然后根据B﹣2A=a,求出a的值是多少即可.【解答】解:(1)∵A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,∴B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y当x=2,y时,B﹣2A=﹣7×2﹣5×()=﹣14+1=﹣13(2)∵|x﹣2a|+(y﹣3)2=0,∴x﹣2a=0,y﹣3=0,∴x=2a,y=3,∵B﹣2A=a,∴﹣7x﹣5y=﹣7×2a﹣5×3=﹣14a﹣15=a解得a=﹣1.19.(2022秋•赵县期末)有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x,y=﹣1.小明同学把“x”错看成“x”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3x2y+2x2y﹣5x2y2+2y2﹣5x2y﹣5y2+5x2y2=﹣3y2,结果不含x,且结果为y2倍数,则小明与小华错看x与y,结果也是正确的.20.(2022秋•醴陵市校级期中)若单项式与的和仍是单项式,求m,n的值.【分析】由题意知单项式与是同类项,据此得,解之可得.【解答】解:∵单项式与的和仍是单项式,∴单项式与是同类项,∴,解得:.21.(2022秋•岳麓区校级月考)先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=﹣6xy+2y2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2y2﹣2x2+15xy﹣6x2+xy=﹣8x2+10xy+2y2;∵|x+2|+(y﹣3)2=0,∴x=﹣2,y=3,∴原式=﹣8×(﹣2)2+10×(﹣2)×3+2×32=﹣32﹣60+18=﹣74.22.(2022秋•章贡区期末)先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y|=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=6x2﹣9xy﹣15x﹣3﹣6x2+6xy﹣6=﹣3xy﹣15x﹣9,由(x+2)2+|y|=0,得x=﹣2,y,当x=﹣2,y时,原式=﹣3×(﹣2)15×(﹣2)﹣9=4+30﹣9=25.23.(2022秋•凤城市期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.24.(2022秋•锦江区校级期末)已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.【分析】(1)根据题目中M、N的值可以解答本题;(2)先化简,然后根据多项式2M﹣N的值与字母x取值无关,可知x的系数为0,从而可以求得a的值.【解答】解:(1)∵M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1,∴N﹣(N﹣2M)=N﹣N+2M=2M=2(x2﹣ax﹣1)=2x2﹣2ax﹣2;(2)M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1,∴2M﹣N=2(x2﹣ax﹣1)﹣(2x2﹣ax﹣2x﹣1)=2x2﹣2ax﹣2﹣2x2+ax+2x+1=(2﹣a)x﹣1,∵多项式2M﹣N的值与字母x取值无关,∴2﹣a=0,得a=2,即a的值是2.25.(2022秋•泉州期中)已知多项式(a+3)x3﹣xb+x+a是关于x的二次三项式,求ab﹣ab的值.【分析】根据题意得出a+3=0、b=2,将a、b的值代入计算可得.【解答】解:根据题意得a+3=0、b=2,则a=﹣3、b=2,∴原式=(﹣3)2﹣(﹣3)×2=9+6=1526.(2022秋•凤翔县期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x|与y2互为相反数时,求(1)中代数式的值.【分析】(1)先化简,把B的值代入,即可求出答案;(2)根据相反数求出x、y的值,再代入求出即可.【解答】解:(1)∵A=x﹣2y,B=﹣x﹣4y+1,∴2(A+B)﹣(2A﹣B)=2A+2B﹣2A+B=3B=3(﹣x﹣4y+1)=﹣3x﹣12y+3;(2)∵|x|与y2互为相反数,∴|x|+y2=0,∴x0,y2=0,∴x,y=0,∴2(A+B)﹣(2A﹣B)=﹣3×()﹣12×0+3=4.27.(2022秋•庄浪县期中)已知﹣2ambc2与4a3bnc2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.【分析】所求式子合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:根据题意得:m=3,n=1,原式=2m2n﹣mn2=2×32×1﹣3×1=18﹣3=15.28.(2022秋•柳州期末)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.【分析】(1)根据题意可得A=2B+(7a2﹣7ab),由此可得出A的表达式.(2)根据非负性可得出a和b的值,代入可得出A的值.【解答】解:(1)由题意得:A=2(﹣4a2+6ab+7)+7a2﹣7ab=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14.(2)根据绝对值及平方的非负性可得:a=﹣1,b=2,故:A=﹣a2+5ab+14=3.29.(2022秋•雨花区期末)先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=0【分析】先根据两个非负数的和等于0,可知每一个非负数等于0,可求出m、n的值,再对所求代数式化简,然后再把m、n的值代入化简后的式子,计算即可.【解答】解:∵|m﹣1|+(n+2)2=0,∴m﹣1=0,n+2=0,∴m=1,n=﹣2,原式=﹣2mn+6m2﹣[m2﹣5mn+5m2+2mn]=﹣2mn+6m2﹣6m2+3mn=mn,当m=1,n=﹣2时,原式=1×(﹣2)=﹣2.30.(2022秋•朝阳区校级期中)已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.【分析】根据题意列出关系式,去括号合并得到结果,根据结果中不含二次项,求出m与n的值,代入所求式子中计算,即可求出值.【解答】解:(mx2﹣2xy+y)﹣(3x2+2nxy+3y)=mx2﹣2xy+y﹣3x2﹣2nxy﹣3y=(m﹣3)x2﹣(2+2n)xy﹣2y,∵两个多项式的差中不含二次项,∴,解得:,则m+3n=3+3×(﹣1)=0.31.(2022秋•雄县期中)阅读材料:对于任何数,我们规定符号的意义是ad﹣bc.例如:1×4﹣2×3=﹣2(1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,的值.【分析】(1)根据定义计算即可;(2)根据定义计算,化简后代入计算即可;【解答】解:(1)5×8﹣(﹣2)×6=52(2)2m2﹣4n+3m+2n=2m2+3m﹣2n∵|m+3|+(n﹣1)2=0,∴m=﹣3,n=1,∴原式=18﹣9﹣2=732.(2022秋•成都期中)如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式a3﹣2b2﹣(a3﹣3b2)的值.【分析】先去括号、合并同类项化简求出a、b的值,再化简代入计算即可;【解答】解:﹣2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(﹣2﹣2b)x2+(a+3)x﹣6y+7由题意:﹣2﹣2b=0,b=﹣1a+3=0,a=﹣3a3﹣2b2﹣(a3﹣3b2)a3﹣2b2a3+3b2a3+b2,当a=﹣3,b=﹣1时,原式(﹣27)+1.33.(2022秋•梁平区期末)学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3a2b﹣2ab2+4a﹣4a2b+6a+2ab2+a2b﹣1=10a﹣1,当a=﹣2时,原式=﹣21,化简结果中不含字母b,故最后的结果与b的取值无关,b=2017这个条件是多余的,则盈盈的说法是正确的.34.(2022秋•金昌期中)小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.【分析】因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B【解答】解:A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,则A+B=﹣3x2+5x+6+4x2﹣5x﹣6=x2.35.(2022秋•安仁县期末)有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.【分析】原式去括号合并后,把x=2”与“x=﹣2”都代入计算,即可作出判断.【解答】解:原式=2x4﹣4x3y﹣x2y2﹣2x4+4x3y+2y3+x2y2=2y3,当y=﹣1时,原式=﹣2.故“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的.36.(2022秋•南县期中)有三个多项式A、B、C分别为:Ax2+x﹣1,Bx2+3x+1,Cx2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.【分析】把A,B,C代入A﹣2B﹣C中,去括号合并得到最简结果,把x=﹣2代入计算即可求出值.【解答】解:∵Ax2+x﹣1,Bx2+3x+1,Cx2﹣x,∴A﹣2B﹣Cx2+x﹣1﹣x2﹣6x﹣2x2+x=﹣x2﹣4x﹣3,当x=﹣2时,原式=﹣4+8﹣3=1.37.(2022•路南区一模)已知代数式A=x2+xy+2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值;(3)若2A﹣B的值与x的取值无关,求y的值.【分析】(1)把A与B代入2A﹣B中,去括号合并即可得到结果;(2)把x与y的值代入2A﹣B计算即可得到结果;(3)由2A﹣B与x取值无关,确定出y的值即可.【解答】解:(1)2A﹣B=2(x2+xy+2y)﹣(2x2﹣2xy+x﹣1)=4xy+4y﹣x;(2)当x=﹣1,y=﹣2时,2A﹣B=4xy+4y﹣x=4×(﹣1)×(﹣2)+4×(﹣2)﹣(﹣1)=1;(3)由(1)可知2A﹣B=4xy+4y﹣x=(4y﹣1)x+4y若2A﹣B的值与x的取值无关,则4y﹣1=0,解得:y.38.(2022秋•阳谷县期末)化简求值:(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值(2)先化简,再求值:4xy﹣2(x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值【分析】(1)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.(2)原式去括号、合并同类项即可化简,再利用非负数的性质得出x、y的值,继而代入计算可得;(3)与x无关说明含x的项都被消去,由此可得出m的值.【解答】解:(1)原式=﹣2ab+6b2﹣6b2+ab﹣a2=﹣ab﹣a2,当a=﹣1、b=2时,原式=﹣(﹣1)×2﹣(﹣1)2=2﹣1=1;(2)原式=4xy﹣3x2+6xy﹣4y2+3x2﹣6xy=4xy﹣4y2,∵(x﹣3)2+|y+1|=0,∴x=3、y=﹣1,则原式=4×3×(﹣1)﹣4×(﹣1)2=﹣12﹣4=﹣16;(3)原式=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵结果与x的取值无关,∴2m﹣3=0,解得:m.39.(2022秋•海南区校级期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?【分析】原式去括号合并得到结果,即可做出判断.【解答】解:原式=7a3﹣6a3b+3a3+6a3b﹣10a3+3=3,由多项式化简可知:多项式的值跟a和b无关,无论多项式中a和b的值是多少,多项式的值都是3.40.(2022秋•越秀区校级期中)化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.【分析】(1)先去括号,然后再进行同类项的合并,最后将x=﹣2,y=﹣1代入;(2)根据题意列式,再利用去括号法则与合并同类项法则化简,再把x的值代入A计算即可.【解答】解:(1)(8x﹣7y)﹣3(4x﹣5y),=8x﹣7y﹣12x+15y,=﹣4x+8y,当x=﹣2,y=﹣1时,原式=﹣4×(﹣2)+8×(﹣1)=0.(2)由题意得:2(﹣2x2+3)﹣A=2x2+2x﹣7,∴A=﹣4x2+6﹣2x2﹣2x+7=﹣6x2﹣2x+13,当x=﹣1时,A=﹣6×(﹣1)2﹣2×(﹣1)+13=9.41.(2022秋•和平区校级月考)已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y﹣2x)2=0,求该整式的值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再由非负数的性质得出x、y的值,代入计算可得.【解答】解:原式=﹣5x2y﹣(2x2y﹣3xy+6x2y+3mx4)+2xy=﹣5x2y﹣2x2y+3xy﹣6x2y﹣3mx4+2xy=﹣13x2y+5xy﹣3mx4,∵整式不含x4项,∴﹣3m=0,即m=0,∴原式=﹣13x2y+5xy,∵|x+1|+(y﹣2x)2=0,∴x+1=0、y﹣2x=0,∴x=﹣1、y=﹣2,则原式=﹣13×(﹣1)2×(﹣2)+5×(﹣1)×(﹣2)=26+10=3642.(2022秋•黄陂区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.【分析】(1)先去括号、合并同类项化简即可;(2)根据当a取任何数值,A﹣2B的值是一个定值时,列出方程即可;【解答】解(1)4A﹣(3A﹣2B)=A+2B=4a2+5ab﹣2a﹣3;(2)A﹣2B=ab﹣2a+1=a(b﹣2)+1∵它的值是一个定值,∴b﹣2=0即b=2.43.(2022秋•建湖县期中)莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)据此请你求出这个多项式A;(2)求出这两个多项式运算的正确结果.【分析】(1)把b2+3b﹣1和2b2+3b+5相加,求得原多项式A;(2)用求得的多项式减去2b2﹣b﹣5,求得正确的结果.【解答】解:(1)根据题意得:A=(b2+3b﹣1)+(2b2+3b+5)=b2+3b﹣1+2b2+3b+5=3b2+6b+4,即:这个多项式A是3b2+6b+4;(2)(3b2+6b+4)﹣(2b2﹣3b﹣5)=3b2+6b+4﹣2b2+3b+5=b2+9b+9,即:算出正确的结果是b2+9b+9.44.(2022秋•崇仁县校级期中)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【分析】(1)根据题意得出三边的长度,再相加即可得;(2)由非负数的性质得出a、b的值,再代入计算即可得.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.45.(2022秋•永登县期中)填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b,(1)4(2⊕5)= 34 .(2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)= 2x2+4y2 .【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,整理即可得到结果.【解答】解:(1)根据题中的新定义得:2⊕5,则原式=434;故答案为:34;(2)∵A=x2+2xy+y2,B=﹣2xy+y2,∴A⊕Bx2﹣2xy+2y2,B⊕Ax2+2xy+2y2,则(A⊕B)+(B⊕A)=2x2+4y2.故答案为:2x2+4y246.(2022秋•乐陵市校级期中)(1)若代数式﹣4x6y与x2ny是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.(3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.【分析】(1)利用同类项定义求出n的值,代入原式计算即可得到结果;(2)原式去括号整理后,将已知等式代入计算即可求出值;(3)将A,B,C代入A+B+C中,去括号合并得到最简结果,即可做出判断.【解答】解:(1)∵代数式﹣4x6y与x2ny是同类项,∴2n=6,即n=3,则原式=﹣1;(2)原式=6x﹣4y﹣x+y﹣x+9y=4x+6y=2(2x+3y),当2x+3y=2015时,原式=4030;(3)∵A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,∴A+B+C=x3+3x2y﹣5xy2+6y3﹣1﹣6y3+5xy2+x2y﹣2x3+2+x3﹣4x2y+3=4,结果与x,y无关.47.(2022秋•江岸区校级月考)已知A=3x﹣2y﹣3,B=﹣4x+3y+2(1)求3A+2B;(2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为 我爱数学 .【分析】(1)把A与B代入3A+2B中,去括号合并即可得到结果;(2)根据题意解读密文,翻译即可.【解答】解:(1)根据题意得:3A+2B=3(3x﹣2y﹣3)+2(﹣4x+3y+2)=9x﹣6y﹣9﹣8x+6y+4=x﹣5;(2)根据题意可得密文为:I love maths,翻译成中文为:我爱数学,故答案为:我爱数学48.(2022秋•北仑区期末)老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:(1)求所捂的二次三项式;(2)若x,求所捂的二次三项式的值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)设所捂的二次三项式为A,则有A=x2﹣5x+1+3x2=4x2﹣5x+1;(2)当x时,原式=91.49.(2022秋•沛县期中)(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为 2n ,用含有n的代数式表示任意一个奇数为 2n﹣1 ;(答案直接填在题中横线上)(2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是 是 ;(填“是”或“否”,答案直接填在题中横线上)(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n=2(m﹣n);此时a+b和a﹣b同时为偶数.请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;(4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?(5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是 偶数 .(填“奇数”或“偶数”,答案直接填在题中横线上)【分析】(1)根据奇数与偶数的定义写出即可;(2)任意两个整数的和与这两个数的差是同时为奇数或同时为偶数;(3)分①设a=2m,b=2n,②设a=2m,b=2n+1,③设a=2m+1,b=2n,④设a=2m+1,b=2n+1四种情况讨论可证明结论;(4)由(3)的结论得出;(5)应用第(2)、(3)、(4)的结论完成.【解答】解:(1)用含有n的代数式表示任意一个偶数为2n,用含有n的代数式表示任意一个奇数为2n+1或2n﹣1(奇数的表达式写出一个即可);(2)任意两个整数的和与这两个数的差是同时为奇数或同时为偶数;(3)②设a=2m,b=2n+1,则:a+b=2m+2n+1=2(m+n)+1a﹣b=2m﹣(2n+1)=2(m﹣n)﹣1,此时a+b和a﹣b同时为奇数;③设a=2m+1,b=2n,则:a+b=2m+1+2n=2(m+n)+1a﹣b=2m+1﹣2n=2(m﹣n)+1,此时a+b和a﹣b同时为奇数;④设a=2m+1,b=2n+1,则:a+b=2m+1+2n+1=2(m+n+1)a﹣b=(2m+1)﹣(2n+1)=2(m﹣n),此时a+b和a﹣b同时为偶数,由此可见:a+b和a﹣b要么同时为奇数,要么同时为偶数,即a+b和a﹣b的奇偶性相同; (4)由(3)的结论:﹣a+b=b﹣a与a+b=b+a奇偶性相同,﹣a﹣b=﹣b﹣a与a﹣b=﹣b+a奇偶性相同,因此﹣a+b、﹣a﹣b、a+b、a﹣b“同奇”或“同偶”;(5)在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是偶数.故答案为:2n,2n+1或2n﹣1;是;偶数.50.(2022秋•金牛区校级期中)已知m、x、y满足(1)(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{x2y+[xy2+(x2y﹣3.475xy2)]﹣6.275xy2}的值.【分析】利用非负数的性质及同类项定义分别求出x,y,m的值,原式去括号合并后代入计算即可求出值.【解答】解:∵(1)(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,∴x=5,m=0,y+1=3,即y=2,则原式=0.375x2yx2yxy2x2y+3.475xy2+6.275xy2=x2y+10xy2=50+200=250.
相关资料
更多