所属成套资源:中考数学三轮冲刺《四边形》解答题冲刺练习 (含答案)
中考数学三轮冲刺《四边形》解答题冲刺练习05(含答案)
展开这是一份中考数学三轮冲刺《四边形》解答题冲刺练习05(含答案),共8页。试卷主要包含了5BC=6,5+13)=39cm等内容,欢迎下载使用。
中考数学三轮冲刺《四边形》解答题冲刺练习05
1.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?
2.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
3.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.
4.如图,已知在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.
5.如图,▱ABCD与▱ABEF中,BC=BE,∠ABC=∠ABE.
求证:四边形EFDC是矩形.
6.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.
(1)求证:四边形BCED′是平行四边形;
(2)若BE平分∠ABC.求证:AB2=AE2+BE2.
7.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面积.
8.如图,在▱ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
(1)求证:四边形DEBF是菱形;
(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为 ,并在图上标出此时点P的位置.
9.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).
(1)当t为何值时,四边形ABQP是矩形?
(2)当t为何值时,四边形AQCP是菱形?
(3)分别求出(2)中菱形AQCP的周长和面积.
10.如图,四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…
(1)记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,请求出a2,a3,a4的值;
(2)根据上述规律写出an的表达式.
0.中考数学三轮冲刺《四边形》解答题冲刺练习05(含答案)答案解析
一 、解答题
1.证明:(1)∵AO=CO,BO=DO
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四边形ABCD是矩形,
∴OC=OD,
∴∠ODC=54°
∴∠BDF=∠ODC﹣∠FDC=18°.
2.证明:(1)证明:∵△ABC绕A点旋转得到△ADE,
∴AB=AD,AC=AE,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,
∴∠EAC=∠DAB.
又AB=AC,
∴AE=AD,
∴△AEC≌△ADB.
(2)∵四边形ADFC是菱形,且∠BAC=45°,
∴∠DBA=∠BAC=45°,
又由旋转知AB=AD,
∴∠DBA=∠BDA=45°,
∴△BAD是等腰直角三角形.
∴BD2=AB2+AD2=22+22=8,
∴BD=2.
∵四边形ADFC是菱形,
∴AD=DF=FC=AC=AB=2,
∴BF=BD﹣DF=2﹣2.
3.解:在平行四边形ABCD中,
∵AB∥CD,∴∠ABC+∠BCD=180°,
∵∠ABE=∠EBC,∠BCE=∠ECD.,
∴∠EBC+∠BCE=90°,
∴∠BEC=90°,
∴BC2=BE2+CE2=122+52=132
∴BC=13cm,
∵AD∥BC,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE,
∴AB=AE,
同理CD=ED,∵AB=CD,
∴AB=AE=CD=ED=0.5BC=6.5cm,
∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm
4.证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E、F分别是▱ABCD边AD、BC的中点,
∴DE=AD,BF=BC,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE=DF.
5.证明:∵在▱ABCD与▱ABEF中,
AB∥CD,AB=CD,AB∥EF,AB=EF,
∴CD∥EF,CD=EF,
∴四边形EFDC是平行四边形,
∵BC=BE,∠ABC=∠ABE,
∴AB⊥CE,
∴CD⊥CE,
∴∠DCE=90°,
∴四边形EFDC是矩形.
6.证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,
∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.
∵DE∥AD′,
∴∠DEA=∠EAD′.
∴∠DAE=∠EAD′=∠DEA=∠D′EA.
∴∠DAD′=∠DED′.
∴四边形DAD′E是平行四边形.
∴DE=AD′.
∵四边形ABCD是平行四边形,
∴AB平行且等于DC.
∴CE平行且等于D′B.
∴四边形BCED′是平行四边形.
(2)∵BE平分∠ABC,
∴∠CBE=∠EBA.
∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵∠DAE=∠BAE,
∴∠EAB+∠EBA=90°.
∴∠AEB=90°.
∴AB2=AE2+BE2.
7.(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=10.
8. (1)证明:∵平行四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB=90°.
∵△ABD中,∠ADB=90°,E时AB的中点,
∴DE=AB=AE=BE.
同理,BF=DF,
∵平行四边形ABCD中,AB=CD,
∴DE=BE=BF=DF,
∴四边形DEBF是菱形;
(2)解:连接BF,
∵菱形DEBF中,∠DEB=120°,
∴∠EF=60°,
∴△BEF是等边三角形,
∵M是BF的中点,
∴EM⊥BF.
则EM=2.
即PF+PM的最小值是2.
9.解:(1)当四边形ABQP是矩形时,BQ=AP,
即:t=8﹣t,解得t=4.
答:当t=4时,四边形ABQP是矩形;
(2)设t秒后,四边形AQCP是菱形
当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.
答:当t=3时,四边形AQCP是菱形;
(3)当t=3时,CQ=5,则周长为:4CQ=20cm,
面积为:4×8﹣2××3×4=20(cm2).
10.解:(1)a2=AC,且在直角△ABC中,AB2+BC2=AC2,
∴a2=a1=,
同理a3=a2=()2a1=2,a4=a3=()3a1=2;
(2)由(1)结论可知:a2=a1=,a3=a2=()2a1=2,a4=a3=()3a1=2;
…故找到规律an=()n﹣1a1=()n﹣1.
相关试卷
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习06(含答案),共9页。试卷主要包含了E为CD边上一点,CE=6等内容,欢迎下载使用。