2023年中考数学三轮冲刺巩固练习卷一(含答案)
展开2023年中考数学三轮冲刺巩固练习卷一
一 、选择题
1.H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,
这一直径用科学记数法表示为( )
A.1.2×10﹣9米 B.1.2×10﹣8米 C.12×10﹣8米 D.1.2×10﹣7米
2.计算sin60°的值等于( ).
A. B. C. D.
3.下列图案都是由字母“m”经过变形、组合而成的.其中不是中心对称图形的是( )
4.某物体如图所示,它的主视图是( )
A. B. C. D.
5.某车间有28名工人生产螺丝与螺母,每人每天生产螺丝12个或螺母18个,现有x名工人生产螺丝,恰好每天生产的螺丝和螺母按2:1配套,为求x,列方程为( )
A.12x =18(28﹣x); B.2×12x =18(28﹣x)
C.2×18x =12(28﹣x) D.12x =2×18(28﹣x)
6.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )
A.2 B.3 C.4 D.5
7.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是( )
A.17 B.12 C.19 D.20
8.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73 B.81 C.91 D.109
二 、填空题
9.在函数中,自变量x的取值范围是 .
10.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是 小时.
11.因式分解:-3x2+3x=_________________.
12.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.
下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正确的结论有 .(填写正确结论的序号)
13.如图,OC是⊙O半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=______.
14.如图,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当3CQ=CE时,EP+BP= .
三 、解答题
15.解不等式组:.
16.为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:
目的地车型 | A村(元/辆) | B村(元/辆) |
大货车 | 800 | 900 |
小货车 | 400 | 600 |
(1)这15辆车中大、小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式;
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
17.如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.
(1)试判断EF与⊙O的关系,并说明理由.
(2)若DC=2,EF=,点P是⊙O上除点E、C外的任意一点,
则∠EPC的度数为______(直接写出答案)
18.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
0.参考答案
1.D.
2.C
3.B.
4.A.
5.B
6.C.
7.A
8.C.
9.答案为:x≥0且x≠2.
10.答案为:2.5.
11.答案为:-3x(x-1)
12.答案为:①②.
13.答案为:52°.
14.答案为:8.
15.解:4<x≤6.
16.解:(1)设大货车用x辆,小货车用y辆,根据题意,得解得
答:大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+9 400.(0≤x≤10,且x为整数).
(3)由题意,得12x+8(10-x)≥100.解得x≥5.
又∵0≤x≤10,∴5≤x≤10且x为整数.
∵y=100x+9 400,k=100>0,y随x的增大而增大,
∴当x=5时,y最小,最小值为y=100×5+9 400=9 900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村,3辆大货车、2辆小货车前往B村.最少运费为9 900元.
17.解:
(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.
∵OD=OE,∴∠1=∠D.
∵点F是BC的中点,点O是DC的中点,
∴OF∥BD,∴∠3=∠D,∠2=∠1,∴∠2=∠3.
在△EFO与△CFO中,∵,∴△EFO≌△CFO(SAS),
∴∠FEO=∠FCO=90°,∴直线EF与⊙O相切.
(2)如图,连接DF.
∵由(1)知,△EFO≌△CFO,∴FC=EF=.∴BC=2
在直角△FDC中,tan∠D==,∴∠D=60°.
当点P在上时,∵点E、P、C、D四点共圆,
∴∠EPC+∠D=180°,∴∠EPC=120°,
当点P在上时,∠EPC=∠D=60°,
故答案为:60°或120°.
五 、综合题
18.解:(1)当x=0,y=3,∴C(0,3).
设抛物线的解析式为y=a(x+1)(x﹣).
将C(0,3)代入得:﹣a=3,解得:a=﹣2,
∴抛物线的解析式为y=﹣2x2+x+3.
(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.
∵OC=3,AO=1,
∴tan∠CAO=3.
∴直线AC的解析式为y=3x+3.
∵AC⊥BM,
∴BM的一次项系数为﹣.
设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.
∴BM的解析式为y=﹣x+.
将y=3x+3与y=﹣x+联立解得:x=﹣,y=.
∴MC=BM=.
∴△MCB为等腰直角三角形.
∴∠ACB=45°.
(3)如图2所示:延长CD,交x轴与点F.
∵∠ACB=45°,点D是第一象限抛物线上一点,
∴∠ECD>45°.
又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,
∴∠CAO=∠ECD.
∴CF=AF.
设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.
∴F(4,0).
设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.
∴CF的解析式为y=﹣x+3.
将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.
将x=代入y=﹣x+3得:
y=. ∴D(,).
2023年中考数学三轮冲刺巩固练习卷四(含答案): 这是一份2023年中考数学三轮冲刺巩固练习卷四(含答案),共9页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。
2023年中考数学三轮冲刺巩固练习卷五(含答案): 这是一份2023年中考数学三轮冲刺巩固练习卷五(含答案),共8页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。
2023年中考数学三轮冲刺巩固练习卷三(含答案): 这是一份2023年中考数学三轮冲刺巩固练习卷三(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。