![2023年中考数学三轮冲刺《解答题》强化练习卷一(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/14047067/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺《解答题》强化练习卷一(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/14047067/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺《解答题》强化练习卷一(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/14047067/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学三轮冲刺《解答题》强化练习卷(含答案)
2023年中考数学三轮冲刺《解答题》强化练习卷一(含答案)
展开
这是一份2023年中考数学三轮冲刺《解答题》强化练习卷一(含答案),共10页。试卷主要包含了1米,参考数据,解得,5,等内容,欢迎下载使用。
2023年中考数学三轮冲刺《解答题》强化练习卷一1.解方程组: 2.将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果;(2)求取出的两张卡片上的数字之和为偶数的概率P. 3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少? 4.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=﹣x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式. 5.如图,两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△ABC应满足什么条件:请给出证明;(3)在(2)的条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你画出图形,此时CG与CF有何数量关系. 6.张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732) 7.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长. 8.抛物线y=ax2+bx+c与直线y=﹣有唯一的公共点A,与直线y=交于点B,C(C在B的右侧),且△ABC是等腰直角三角形.过C作x轴的垂线,垂足为D(3,0).(1)求抛物线的解析式;(2)直线y=2x与抛物线的交点为P,Q,且P在Q的左侧.(ⅰ)求P,Q两点的坐标;(ⅱ)设直线y=2x+m(m>0)与抛物线的交点为M,N,求证:直线PM,QN,CD交于一点.
0.参考答案1.解:x=-1,y=5.2.解:(1)列表如下:由列表可知,(x,y)的所有等可能结果共6种.(2)由(1)知共有6种等可能结果,其中两张牌的和为偶数的情况有2种,则P(两张牌上数字和为偶数)==.3.解:(1)设这项工程的规定时间是x天,根据题意得:
(+)×15+=1.解得:x=30.
经检验x=30是原分式方程的解.
答:这项工程的规定时间是30天.
(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),
则该工程施工费用是:22.5×(6500+3500)=225000(元).
答:该工程的费用为225000元.4.解:(1)∵直线l1:y=﹣x经过点A,A点的纵坐标是2,∴当y=2时,x=﹣4,∴A(﹣4,2),∵反比例函数y=的图象经过点A,∴k=﹣4×2=﹣8,∴反比例函数的表达式为y=﹣;(2)∵直线l1:y=﹣x与反比例函数y=的图象交于A,B两点,∴B(4,﹣2),∴不等式﹣x>的解集为x<﹣4或0<x<4;(3)如图,设平移后的直线l2与x轴交于点D,连接AD,BD,∵CD∥AB,∴△ABC的面积与△ABD的面积相等,∵△ABC的面积为30,∴S△AOD+S△BOD=30,即OD(|yA|+|yB|)=30,∴×OD×4=30,∴OD=15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.5.解:(1)S△ABC=S四边形AFBD,理由:由题意可得:AD∥EC,则S△ADF=S△ABD,故S△ACF=S△ADF=S△ABD,则S△ABC=S四边形AFBD;(2)△ABC为等腰直角三角形,即:AB=AC,∠BAC=90°,理由如下:∵F为BC的中点,∴CF=BF,∵CF=AD,∴AD=BF,又∵AD∥BF,∴四边形AFBD为平行四边形,∵AB=AC,F为BC的中点,∴AF⊥BC,∴平行四边形AFBD为矩形∵∠BAC=90°,F为BC的中点,∴AF=BC=BF,∴四边形AFBD为正方形;(3)如图3所示:由(2)知,△ABC为等腰直角三角形,AF⊥BC,设CF=k,则GF=EF=CB=2k,由勾股定理得:CG=k,∴CG=CF.6.7.证明:(1)如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB=5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴=,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴,设EC=CF=x,∴x=.∴CE=.8.解:(1)过点A作AM⊥BC交于M,∵△ABC是等腰直角三角形,∴AM=BM=﹣(﹣)=2,∵CD⊥x轴,D(3,0),∴C(3,),∴M(1,),A(1,﹣),B(﹣1,),设y=ax2+bx+c(a≠0),∴,解得,∴y=x2﹣x;(2)(ⅰ)解:联立方程组,解得或,∵P在Q的左侧,∴P(0,0),Q(6,12);(ⅱ)证明:设M(x1,y1),N(x2,y2),联立方程组,整理得x2﹣6x﹣2m=0,∴x1+x2=6,∴y1=2x1+m,y2=2=﹣2x1+m+12,设直线PM的解析式为y=k1x,∴2x1+m=k1x1,∴k1=2+,∴y=(2+)x,∴直线PM与CD的交点为(3,6+),设QN的解析式为y=k2x+b2,∴,解得,∴y=(2﹣)x+,∴直线QN与CD的交点为(3,6+),∴直线PM,QN,CD交于一点.
相关试卷
这是一份中考数学三轮冲刺《解答题》强化练习06(含答案),共9页。
这是一份中考数学三轮冲刺《解答题》强化练习05(含答案),共7页。试卷主要包含了5时x的值;等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《解答题》强化练习04(含答案),共8页。试卷主要包含了∴D等内容,欢迎下载使用。