专题5.6 四边形中的折叠问题专项训练(30道)(举一反三)(浙教版)
展开专题5.6 四边形中的折叠问题专项训练(30道)
【浙教版】
考卷信息:
本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对折叠问题的理解!
1.(2021春•淅川县期末)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处,易证四边形AECF是平行四边形.要使四边形AECF是菱形,则∠BAE的度数是( )
A.30° B.40° C.45° D.50°
2.(2021•嘉兴二模)如图,矩形纸片ABCD中,AD=6,E是CD上一点,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.若AD=3GD,则DE的值为( )
A. B. C. D.
3.(2021•南岗区校级二模)如图,矩形ABCD,点E是AD边上的一点,将矩形沿直线BE翻折,点A落在DC边上的点F处,若AB=10,AD=8,则线段AE的长为( )
A.3 B.4 C.5 D.6
4.(2021•南岗区模拟)如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C′,且DC′是AB的垂直平分线,则∠DEC的大小为( )
A.30° B.45° C.60° D.75°
5.(2021春•江北区期末)如图,已知矩形纸片ABCD的两边AB=4,BC=2,过点B折叠纸片,使点A落在边CD上的点F处,折痕为BE,则EF的长为( )
A. B. C. D.
6.(2021•海东市三模)如图,在平面直角坐标系中,四边形OABC是矩形,OA=6,将△ABC沿直线AC翻折,使点B落在点D处,AD交x轴于点E,若∠BAC=30°,则点D的坐标为( )
A. B. C. D.
7.(2021•玉田县一模)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处,易证四边形AECF是平行四边形.当∠BAE为( )度时,四边形AECF是菱形.
A.30° B.40° C.45° D.50°
8.(2021•莲湖区模拟)如图,在平面直角坐标系中,四边形OABC为矩形,点A在x轴上,点C在y轴上,点B的坐标为(8,6),若将△OAB沿OB翻折,点A的对应点为点E,OE交BC于点D,则点D的坐标为( )
A.(,6) B.(,6) C.(,6) D.(,6)
9.(2021•金华模拟)如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有( )
A.2个 B.3个 C.4个 D.5个
10.(2021•大鹏新区二模)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为26;④当OD⊥AD时,BP=2.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
11.(2021•阜新)如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折痕,已知AB=6,BC=10.当折痕GH最长时,线段BH的长为 .
12.(2021•红桥区三模)如图,正方形纸片ABCD的边长为6,G是BC的中点,沿着AG折叠该纸片,得点B的对应点为点F,延长GF交DC于点E,则线段DE的长为 .
13.(2021•渝中区校级二模)如图,点E在矩形ABCD边CD上,将△ADE沿AE翻折,点D恰好落在BC上的点F处,若AB=2CF,CE=3,连接DF,与AE交于H点,连接BH,则点F到BH的距离为 .
14.(2021•河南模拟)如图,在矩形ABCD中,CD=3,对角线AC=5,点G,H分别是线段AD,AC上的点,将△ACD沿直线GH折叠,点C,D分别落在点E,F处.当点E落在折线CAD上,且AE=1时,CH的长为 .
15.(2021•宁波模拟)如图,将边长为12的正方形纸片ABCD折叠,点A与CD边中点M重合,折痕交AD于点E,交BC于点F,边AB折叠后与BC交于点G,则DE长度为 ,BG与BC的数量关系为 .
16.(2021•邵阳县模拟)如图,在边长为2的菱形ABCD中,∠D=45°,点E在BC边上,将△ABE沿AE所在的直线折叠得到△AB1E,AB1交CD于点F,使EB1经过点C,则CB1的长度为 .
17.(2021春•拱墅区校级月考)如图,矩形ABCD中,AD=5,AB=7,点E为DC一个动点,点F是AD上的一个动点,把△DEF沿EF折叠,点D的对应点为D′,D′落在∠ABC的平分线上,满足条件的点D′有且仅有一个,则AF的长为 .
18.(2021春•泰山区期末)如图,四边形OABC是矩形,点A的坐标为(4,0),点C的坐标为(0,2),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 .
19.(2021•江汉区模拟)如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F处,连接FC,若∠DAF=18°,则∠DCF= 度.
20.(2021•沈河区二模)如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是 .
21.(2021•南岗区模拟)已知:将矩形ABCD折叠,使点A与点C重合,折痕为EF,其中点E,F分别在AB,CD上,点D的对应点为点G,连接AF.
(1)如图1,求证:四边形AECF为菱形;
(2)如图2,若∠CFG=60°,连接AC交EF于点O,连接DO,GO,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.
22.(2021春•鼓楼区校级期中)已知,如图,四边形ABCD中,∠D=90°,AB=AC,∠DAC=∠B,点E是BC的中点.
(1)求证:四边形AECD是矩形;
(2)若AD=8,CD=6,点F是AD上的点,连接CF,把∠D沿CF折叠,使点D落在点G处.当△AFG为直角三角形时,求CF的长度.
23.(2021•灌南县二模)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.
24.(2021•下城区模拟)小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,求矩形ABCD长与宽的比值.
25.(2021春•中山市校级月考)一张矩形纸ABCD,将点B翻折到对角线AC上的点M处,折痕CE交AB于点E.将点D翻折到对角线AC上的点H处,折痕AF交DC于点F,折叠出四边形AECF.
(1)求证:AF∥CE;
(2)当∠BAC= 度时,四边形AECF是菱形?说明理由.
26.(2021•道里区二模)在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.
(1)如图1,求证:AE⊥BF;
(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值
27.(2021•崂山区一模)已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.
(1)求证:AE=CE;
(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.
28.(2021春•睢宁县期中)把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.
(1)连接BE,求证:四边形BFDE是菱形,并说明理由;
(2)若AB=8cm,BC=16cm,求线段DF及折痕EF的长.
29.(2021秋•梅列区校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.
(1)求∠EDG的度数.
(2)如图2,E为BC的中点,连接BF.
①求证:BF∥DE;
②若正方形边长为6,求线段AG的长.
30.(2021•东城区一模)阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足 关系时,仍有EF=BE+DF;
(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.